Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Horm Behav ; 144: 105218, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35785712

RESUMEN

Hormonal contraceptives prevent ovulation with subsequent reduction in endogenous levels of estradiol, progesterone and its neuroactive metabolite allopregnanolone. These neurosteroids modulate several brain functions, including neuronal plasticity, cognition and memory. We hypothesized that hormonal contraceptives might affect synaptic plasticity, learning and memory, as a consequence of suppressed endogenous hormones levels. Female rats were orally treated with a combination of ethinyl estradiol (EE, 0.020 mg) and levonorgestrel (LNG, 0.060 mg) once daily for four weeks. Decreased hippocampal brain-derived neurotrophic factor (BDNF) levels and altered histone H3 post-translational modifications (PTMs) were observed 14 days after discontinuation from chronic EE-LNG treatment. These effects were not accompanied by alterations in long-term plasticity at glutamatergic synapses, recognition memory in the novel object and novel place location tests, or spatial learning, memory, and behavioral flexibility in the Morris water maze test. Thus, decreased BDNF content does not affect synaptic plasticity and cognitive performance; rather it might be relevant for the occurrence of certain psychiatric symptoms, reported by some women using hormonal contraceptives. These results provide the first evidence of hippocampal epigenetic changes induced by hormonal contraceptives and complement previous studies on the neurobiological actions of hormonal contraceptives; the finding that effects of chronic EE-LNG treatment on BDNF content and histone PTMs are observed 14 days after drug discontinuation warrants further investigation to better understand the implications of such long-term consequences for women's health.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Histonas , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Anticonceptivos/metabolismo , Anticonceptivos/farmacología , Femenino , Hipocampo , Histonas/metabolismo , Humanos , Plasticidad Neuronal , Procesamiento Proteico-Postraduccional , Ratas
2.
Int J Mol Sci ; 21(18)2020 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-32937957

RESUMEN

Parkinson's disease (PD) is considered a synucleinopathy because of the intraneuronal accumulation of aggregated α-synuclein (αSyn). Recent evidence points to soluble αSyn-oligomers (αSynO) as the main cytotoxic species responsible for cell death. Given the pivotal role of αSyn in PD, αSyn-based models are crucial for the investigation of toxic mechanisms and the identification of new therapeutic targets in PD. By using a metabolomics approach, we evaluated the metabolic profile of brain and serum samples of rats infused unilaterally with preformed human αSynOs (HαSynOs), or vehicle, into the substantia nigra pars compacta (SNpc). Three months postinfusion, the striatum was dissected for striatal dopamine (DA) measurements via High Pressure Liquid Chromatography (HPLC) analysis and mesencephalon and serum samples were collected for the evaluation of metabolite content via gas chromatography mass spectrometry analysis. Multivariate, univariate and correlation statistics were applied. A 40% decrease of DA content was measured in the HαSynO-infused striatum as compared to the contralateral and the vehicle-infused striata. Decreased levels of dehydroascorbic acid, myo-inositol, and glycine, and increased levels of threonine, were found in the mesencephalon, while increased contents of fructose and mannose, and a decrease in glycine and urea, were found in the serum of HαSynO-infused rats. The significant correlation between DA and metabolite content indicated that metabolic variations reflected the nigrostriatal degeneration. Collectively, the metabolomic fingerprint of HαSynO-infused rats points to an increase of oxidative stress markers, in line with PD neuropathology, and provides hints for potential biomarkers of PD.


Asunto(s)
Metaboloma/fisiología , Enfermedad de Parkinson/metabolismo , Sustancia Negra/metabolismo , alfa-Sinucleína/metabolismo , Animales , Biomarcadores/metabolismo , Cuerpo Estriado/metabolismo , Modelos Animales de Enfermedad , Dopamina/metabolismo , Humanos , Masculino , Metabolómica/métodos , Neuronas/metabolismo , Estrés Oxidativo/fisiología , Ratas , Ratas Sprague-Dawley
3.
Int J Mol Sci ; 21(22)2020 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-33198335

RESUMEN

The accumulation of aggregated α-synuclein (αSyn) is a hallmark of Parkinson's disease (PD). Current evidence indicates that small soluble αSyn oligomers (αSynOs) are the most toxic species among the forms of αSyn aggregates, and that size and topological structural properties are crucial factors for αSynOs-mediated toxicity, involving the interaction with either neurons or glial cells. We previously characterized a human αSynO (H-αSynO) with specific structural properties promoting toxicity against neuronal membranes. Here, we tested the neurotoxic potential of these H-αSynOs in vivo, in relation to the neuropathological and symptomatic features of PD. The H-αSynOs were unilaterally infused into the rat substantia nigra pars compacta (SNpc). Phosphorylated αSyn (p129-αSyn), reactive microglia, and cytokine levels were measured at progressive time points. Additionally, a phagocytosis assay in vitro was performed after microglia pre-exposure to αsynOs. Dopaminergic loss, motor, and cognitive performances were assessed. H-αSynOs triggered p129-αSyn deposition in SNpc neurons and microglia and spread to the striatum. Early and persistent neuroinflammatory responses were induced in the SNpc. In vitro, H-αSynOs inhibited the phagocytic function of microglia. H-αsynOs-infused rats displayed early mitochondrial loss and abnormalities in SNpc neurons, followed by a gradual nigrostriatal dopaminergic loss, associated with motor and cognitive impairment. The intracerebral inoculation of structurally characterized H-αSynOs provides a model of progressive PD neuropathology in rats, which will be helpful for testing neuroprotective therapies.


Asunto(s)
Modelos Animales de Enfermedad , Enfermedad de Parkinson/fisiopatología , Sustancia Negra/metabolismo , alfa-Sinucleína/metabolismo , Animales , Citocinas/metabolismo , Dopamina/metabolismo , Neuronas Dopaminérgicas/metabolismo , Humanos , Inflamación , Masculino , Microglía/metabolismo , Neuronas/metabolismo , Fagocitosis , Fosforilación , Ratas , Ratas Sprague-Dawley , Proteínas Recombinantes/metabolismo , Sustancia Negra/patología
4.
Mov Disord ; 34(12): 1818-1830, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31335998

RESUMEN

BACKGROUND: Thalidomide and closely related analogues are used clinically for their immunomodulatory and antiangiogenic properties mediated by the inhibition of the proinflammatory cytokine tumor necrosis factor α. Neuroinflammation and angiogenesis contribute to classical neuronal mechanisms underpinning the pathophysiology of l-dopa-induced dyskinesia, a motor complication associated with l-dopa therapy in Parkinson's disease. The efficacy of thalidomide and the more potent derivative 3,6'-dithiothalidomide on dyskinesia was tested in the 6-hydroxydopamine Parkinson's disease model. METHODS: Three weeks after 6-hydroxydopamine infusion, rats received 10 days of treatment with l-dopa plus benserazide (6 mg/kg each) and thalidomide (70 mg/kg) or 3,6'-dithiothalidomide (56 mg/kg), and dyskinesia and contralateral turning were recorded daily. Rats were euthanized 1 hour after the last l-dopa injection, and levels of tumor necrosis factor-α, interleukin-10, OX-42, vimentin, and vascular endothelial growth factor immunoreactivity were measured in their striatum and substantia nigra reticulata to evaluate neuroinflammation and angiogenesis. Striatal levels of GLUR1 were measured as a l-dopa-induced postsynaptic change that is under tumor necrosis factor-α control. RESULTS: Thalidomide and 3,6'-dithiothalidomide significantly attenuated the severity of l-dopa-induced dyskinesia while not affecting contralateral turning. Moreover, both compounds inhibited the l-dopa-induced microgliosis and excessive tumor necrosis factor-α in the striatum and substantia nigra reticulata, while restoring physiological levels of the anti-inflammatory cytokine interleukin-10. l-Dopa-induced angiogenesis was inhibited in both basal ganglia nuclei, and l-dopa-induced GLUR1 overexpression in the dorsolateral striatum was restored to normal levels. CONCLUSIONS: These data suggest that decreasing tumor necrosis factor-α levels may be useful to reduce the appearance of dyskinesia, and thalidomide, and more potent derivatives may provide an effective therapeutic approach to dyskinesia. © 2019 International Parkinson and Movement Disorder Society.


Asunto(s)
Antiparkinsonianos/efectos adversos , Discinesia Inducida por Medicamentos/terapia , Factores Inmunológicos/uso terapéutico , Levodopa/efectos adversos , Enfermedad de Parkinson/complicaciones , Talidomida/análogos & derivados , Talidomida/uso terapéutico , Inhibidores de la Angiogénesis/uso terapéutico , Animales , Citocinas/metabolismo , Discinesia Inducida por Medicamentos/psicología , Interleucina-10/metabolismo , Masculino , Neostriado/metabolismo , Oxidopamina , Enfermedad de Parkinson/tratamiento farmacológico , Ratas , Ratas Sprague-Dawley , Receptores AMPA/metabolismo , Sustancia Negra/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
5.
J Neural Transm (Vienna) ; 125(8): 1287-1297, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29541852

RESUMEN

Neuroinflammation is a main component of Parkinson's disease (PD) neuropathology, where unremitting reactive microglia and microglia-secreted soluble molecules such as cytokines, contribute to the neurodegenerative process as part of an aberrant immune reaction. Besides, pro-inflammatory cytokines, predominantly TNF-α, play an important neuromodulatory role in the healthy and diseased brain, being involved in neurotransmitter metabolism, synaptic scaling and brain plasticity. Recent preclinical studies have evidenced an exacerbated neuroinflammatory reaction in the striatum of parkinsonian rats that developed dyskinetic responses following L-DOPA administration. These findings prompted investigation of non-neuronal mechanisms of L-DOPA-induced dyskinesia (LID) involving glial cells and glial-secreted soluble molecules. Hence, besides the classical mechanisms of LID that include abnormal corticostriatal neurotransmission and maladaptive changes in striatal medium spiny neurons (MSNs), here we review studies supporting a role of striatal neuroinflammation in the development of LID, with a focus on microglia and the pro-inflammatory cytokine TNF-α. Moreover, we discuss several mechanisms that have been involved in the development of LID, which are directly or indirectly under the control of TNF-α, and might be abnormally affected by its chronic overproduction and release by microglia in PD. It is proposed that TNF-α may contribute to the altered neuronal responses occurring in LID by targeting receptor trafficking and function in MSNs, but also dopamine synthesis in preserved dopaminergic terminals and serotonin metabolism in serotonergic neurons. Therapeutic approaches specifically targeting glial-secreted cytokines may represent a novel target for preventing or treating LID.


Asunto(s)
Discinesia Inducida por Medicamentos/inmunología , Inflamación/inmunología , Factor de Necrosis Tumoral alfa/inmunología , Animales , Antiparkinsonianos/efectos adversos , Discinesia Inducida por Medicamentos/patología , Humanos , Inflamación/patología , Levodopa/efectos adversos
6.
Int Rev Neurobiol ; 174: 119-186, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38341228

RESUMEN

Affective neuropsychiatric disorders such as depression, anxiety and apathy are among the most frequent non-motor symptoms observed in people with Parkinson's disease (PD). These conditions often emerge during the prodromal phase of the disease and are generally considered to result from neurodegenerative processes in meso-corticolimbic structures, occurring in parallel to the loss of nigrostriatal dopaminergic neurons. Depression, anxiety, and apathy are often treated with conventional medications, including selective serotonin reuptake inhibitors, tricyclic antidepressants, and dopaminergic agonists. The ability of these pharmacological interventions to consistently counteract such neuropsychiatric symptoms in PD is still relatively limited and the development of reliable experimental models represents an important tool to identify more effective treatments. This chapter provides information on rodent models of PD utilized to study these affective neuropsychiatric symptoms. Neurotoxin-based and genetic models are discussed, together with the main behavioral tests utilized to identify depression- and anxiety-like behaviors, anhedonia, and apathy. The ability of various therapeutic approaches to counteract the symptoms observed in the various models is also reviewed.


Asunto(s)
Apatía , Enfermedad de Parkinson , Animales , Humanos , Enfermedad de Parkinson/terapia , Roedores , Apatía/fisiología , Ansiedad/tratamiento farmacológico , Ansiedad/etiología , Trastornos del Humor
7.
Elife ; 122024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38940422

RESUMEN

Parkinson's disease (PD) is characterized by motor impairments caused by degeneration of dopamine neurons in the substantia nigra pars compacta. In addition to these symptoms, PD patients often suffer from non-motor comorbidities including sleep and psychiatric disturbances, which are thought to depend on concomitant alterations of serotonergic and noradrenergic transmission. A primary locus of serotonergic neurons is the dorsal raphe nucleus (DRN), providing brain-wide serotonergic input. Here, we identified electrophysiological and morphological parameters to classify serotonergic and dopaminergic neurons in the murine DRN under control conditions and in a PD model, following striatal injection of the catecholamine toxin, 6-hydroxydopamine (6-OHDA). Electrical and morphological properties of both neuronal populations were altered by 6-OHDA. In serotonergic neurons, most changes were reversed when 6-OHDA was injected in combination with desipramine, a noradrenaline (NA) reuptake inhibitor, protecting the noradrenergic terminals. Our results show that the depletion of both NA and dopamine in the 6-OHDA mouse model causes changes in the DRN neural circuitry.


Asunto(s)
Modelos Animales de Enfermedad , Neuronas Dopaminérgicas , Núcleo Dorsal del Rafe , Oxidopamina , Trastornos Parkinsonianos , Neuronas Serotoninérgicas , Animales , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/patología , Neuronas Serotoninérgicas/metabolismo , Núcleo Dorsal del Rafe/metabolismo , Núcleo Dorsal del Rafe/efectos de los fármacos , Ratones , Trastornos Parkinsonianos/fisiopatología , Trastornos Parkinsonianos/inducido químicamente , Trastornos Parkinsonianos/metabolismo , Trastornos Parkinsonianos/patología , Masculino , Ratones Endogámicos C57BL , Desipramina/farmacología , Norepinefrina/metabolismo
8.
Heliyon ; 10(16): e35948, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39224310

RESUMEN

Olfactory dysfunction is a common non-motor symptom associated with Parkinson's disease (PD). This condition usually appears before the onset of the cardinal motor symptoms and is still poorly understood. Here, we generated a mouse model of early-stage PD based on partial 6-hydroxydopamine (6-OHDA) lesion of the dorsal striatum to reproduce the olfactory deficit and associated cellular and electrophysiological anomalies observed in patients. Using this model, we investigated the effect of long-term, continuous administration of pramipexole, a dopamine D2/3 selective agonist, on olfactory dysfunction. We found that pramipexole reverted the impairment of odor discrimination displayed by the mouse model in the habituation/dishabituation test. In line with similar observations in PD patients, the mouse model showed an increase of dopamine cells paralleled by augmented levels of the dopamine marker, tyrosine hydroxylase, in the olfactory bulb (OB). These changes, which have been proposed to contribute to olfactory dysfunction, were abolished by oral administration of pramipexole. Local field potential recording in the OB of 6-OHDA lesion mice showed reduced oscillations in the beta frequency range, in comparison to healthy control mice. This abnormality, which is suggestive of defective long range OB transmission, was also counteracted by pramipexole. Altogether these findings indicate that prolonged pharmacological stimulation of dopamine D2-like receptors rescues olfactory discrimination observed in experimental parkinsonism. Moreover, they show that this protective effect is exerted in parallel to a normalization of dopamine neurons and beta band oscillations in the OB, providing information on the potential mechanisms involved in PD-related olfactory dysfunction.

9.
Prog Neurobiol ; 231: 102536, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37805096

RESUMEN

Excessive daytime sleepiness (EDS) and sleep fragmentation are often observed in Parkinson's disease (PD) patients and are poorly understood despite their considerable impact on quality of life. We examined the ability of a neurotoxin-based mouse model of PD to reproduce these disorders and tested the potential counteracting effects of dopamine replacement therapy. Experiments were conducted in female mice with a unilateral 6-hydroxydopamine lesion of the medial forebrain bundle, leading to the loss of dopamine neurons projecting to the dorsal and ventral striatum. Sham-operated mice were used as control. Electroencephalographic and electromyographic recording was used to identify and quantify awaken, rapid eye movement (REM) and non-REM (NREM) sleep states. PD mice displayed enhanced NREM sleep and reduced wakefulness during the active period of the 24-hour circadian cycle, indicative of EDS. In addition, they also showed fragmentation of NREM sleep and increased slow-wave activity, a marker of sleep pressure. Electroencephalographic analysis of the PD model also revealed decreased density and increased length of burst-like thalamocortical oscillations (spindles). Treatment of PD mice with the dopamine receptor agonist, pramipexole, but not with L-DOPA, counteracted EDS by reducing the number, but not the length, of NREM sleep episodes during the first half of the active period. The present model recapitulates some prominent PD-related anomalies affecting sleep macro- and micro-structure. Based on the pharmacological profile of pramipexole these results also indicate the involvement of impaired dopamine D2/D3 receptor transmission in EDS.


Asunto(s)
Enfermedad de Parkinson , Trastornos del Sueño-Vigilia , Humanos , Femenino , Ratones , Animales , Enfermedad de Parkinson/tratamiento farmacológico , Dopamina , Pramipexol/farmacología , Pramipexol/uso terapéutico , Calidad de Vida , Sueño , Trastornos del Sueño-Vigilia/tratamiento farmacológico , Trastornos del Sueño-Vigilia/etiología , Modelos Animales de Enfermedad
10.
Nat Commun ; 13(1): 5944, 2022 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-36209152

RESUMEN

The lateral septum (LS) has been implicated in the regulation of locomotion. Nevertheless, the neurons synchronizing LS activity with the brain's clock in the suprachiasmatic nucleus (SCN) remain unknown. By interrogating the molecular, anatomical and physiological heterogeneity of dopamine neurons of the periventricular nucleus (PeVN; A14 catecholaminergic group), we find that Th+/Dat1+ cells from its anterior subdivision innervate the LS in mice. These dopamine neurons receive dense neuropeptidergic innervation from the SCN. Reciprocal viral tracing in combination with optogenetic stimulation ex vivo identified somatostatin-containing neurons in the LS as preferred synaptic targets of extrahypothalamic A14 efferents. In vivo chemogenetic manipulation of anterior A14 neurons impacted locomotion. Moreover, chemogenetic inhibition of dopamine output from the anterior PeVN normalized amphetamine-induced hyperlocomotion, particularly during sedentary periods. Cumulatively, our findings identify a hypothalamic locus for the diurnal control of locomotion and pinpoint a midbrain-independent cellular target of psychostimulants.


Asunto(s)
Dopamina , Hipotálamo , Animales , Dopamina/fisiología , Ratones , Neuronas/fisiología , Somatostatina , Núcleo Supraquiasmático/fisiología
11.
Front Aging Neurosci ; 12: 31, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32116655

RESUMEN

The search for new disease-modifying drugs for Parkinson's disease (PD) is a slow and highly expensive process, and the repurposing of drugs already approved for different medical indications is becoming a compelling alternative option for researchers. Genetic variables represent a predisposing factor to the disease and mutations in leucine-rich repeat kinase 2 (LRRK2) locus have been correlated to late-onset autosomal-dominant PD. The common fruit fly Drosophila melanogaster carrying the mutation LRRK2 loss-of-function in the WD40 domain (LRRK2WD40), is a simple in vivo model of PD and is a valid tool to first evaluate novel therapeutic approaches to the disease. Recent studies have suggested a neuroprotective activity of immunomodulatory agents in PD models. Here the immunomodulatory drug Pomalidomide (POM), a Thalidomide derivative, was examined in the Drosophila LRRK2WD40 genetic model of PD. Mutant and wild type flies received increasing POM doses (1, 0.5, 0.25 mM) through their diet from day 1 post eclosion, until postnatal day (PN) 7 or 14, when POM's actions were evaluated by quantifying changes in climbing behavior as a measure of motor performance, the number of brain dopaminergic neurons and T-bars, mitochondria integrity. LRRK2WD40 flies displayed a spontaneous age-related impairment of climbing activity, and POM significantly and dose-dependently improved climbing performance both at PN 7 and PN 14. LRRK2WD40 fly motor disability was underpinned by a progressive loss of dopaminergic neurons in posterior clusters of the protocerebrum, which are involved in the control of locomotion, by a low number of T-bars density in the presynaptic bouton active zones. POM treatment fully rescued the cell loss in all posterior clusters at PN 7 and PN 14 and significantly increased the T-bars density. Moreover, several damaged mitochondria with dilated cristae were observed in LRRK2WD40 flies treated with vehicle but not following POM. This study demonstrates the neuroprotective activity of the immunomodulatory agent POM in a genetic model of PD. POM is an FDA-approved clinically available and well-tolerated drug used for the treatment of multiple myeloma. If further validated in mammalian models of PD, POM could rapidly be clinically tested in humans.

12.
Pharmaceutics ; 11(12)2019 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-31817711

RESUMEN

Progesterone is a sex hormone which shows neuroprotective effects in different neurodegenerative disorders, including Parkinson's disease, stroke, and Alzheimer's disease. However, the pharmacokinetic limitations associated with the peripheral administration of this molecule highlight the need for more efficient delivery approaches to increase brain progesterone levels. Since the nose-to-brain administration of mucoadhesive hydrogel nanoparticles is a non-invasive and convenient strategy for the delivery of therapeutics to the central nervous system, in this work, progesterone-loaded hydrogel nanoparticle formulations have been prepared, characterized, and tested in vivo. Nanoparticles, loaded with different progesterone concentrations, have been obtained by polyelectrolyte complex formation between trimethyl chitosan and sodium alginate, followed by ionotropic gelation with sodium tripolyphosphate as a cross-linking agent. All formulations showed a mean diameter ranging from 200 nm to 236 nm, a polydispersity index smaller than 0.23, and a high progesterone encapsulation efficiency (83-95%). The zeta potential values were all positive and greater than 28 mV, thus ensuring nanoparticles stability against aggregation phenomena as well as interaction with negative sialic residues of the nasal mucosa. Finally, in vivo studies on Sprague-Dawley male rats demonstrated a 5-fold increase in brain progesterone concentrations compared to basal progesterone level after 30 min of hydrogel nanoparticle inhalation.

13.
Front Mol Neurosci ; 11: 144, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29755317

RESUMEN

The role of phagocytosis in the neuroprotective function of microglia has been appreciated for a long time, but only more recently a dysregulation of this process has been recognized in Parkinson's disease (PD). Indeed, microglia play several critical roles in central nervous system (CNS), such as clearance of dying neurons and pathogens as well as immunomodulation, and to fulfill these complex tasks they engage distinct phenotypes. Regulation of phenotypic plasticity and phagocytosis in microglia can be impaired by defects in molecular machinery regulating critical homeostatic mechanisms, including autophagy. Here, we briefly summarize current knowledge on molecular mechanisms of microglia phagocytosis, and the neuro-pathological role of microglia in PD. Then we focus more in detail on the possible functional role of microglial phagocytosis in the pathogenesis and progression of PD. Evidence in support of either a beneficial or deleterious role of phagocytosis in dopaminergic degeneration is reported. Altered expression of target-recognizing receptors and lysosomal receptor CD68, as well as the emerging determinant role of α-synuclein (α-SYN) in phagocytic function is discussed. We finally discuss the rationale to consider phagocytic processes as a therapeutic target to prevent or slow down dopaminergic degeneration.

14.
Br J Pharmacol ; 175(16): 3298-3314, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29570770

RESUMEN

BACKGROUND AND PURPOSE: Microglial phenotype and phagocytic activity are deregulated in Parkinson's disease (PD). PPARγ agonists are neuroprotective in experimental PD, but their role in regulating microglial phenotype and phagocytosis has been poorly investigated. We addressed it by using the PPARγ agonist MDG548. EXPERIMENTAL APPROACH: Murine microglial cell line MMGT12 was stimulated with LPS and/or MDG548, and their effect on phagocytosis of fluorescent microspheres or necrotic neurons was investigated by flow cytometry. Cytokines and markers of microglia phenotype, such as mannose receptor C type 1; MRC1), Ym1 and CD68 were measured by elisa and fluorescent immunohistochemistry. Levels of Beclin-1, which plays a role in microglial phagocytosis, were measured by Western blotting. In the in vivo MPTP-probenecid (MPTPp) model of PD in mice, MDG548 was tested on motor impairment, nigral neurodegeneration, microglial activation and phenotype. KEY RESULTS: In LPS-stimulated microglia, MDG548 increased phagocytosis of both latex beads and necrotic cells, up-regulated the expression of MRC1, CD68 and to a lesser extent IL-10, while blocking the LPS-induced increase of TNF-α and iNOS. MDG548 also induced Beclin-1. Chronic MPTPp treatment in mice down-regulated MRC1 and TGF-ß and up-regulated TNF-α and IL-1ß immunoreactivity in activated CD11b-positive microglia, causing the death of nigral dopaminergic neurons. MDG548 arrested MPTPp-induced cell death, enhanced MRC1 and restored cytokine levels. CONCLUSIONS AND IMPLICATIONS: This study adds a novel mechanism for PPARγ-mediated neuroprotection in PD and suggests that increasing phagocytic activity and anti-inflammatory markers may represent an effective disease-modifying approach.


Asunto(s)
Microglía/efectos de los fármacos , Neuroprotección/fisiología , PPAR gamma/agonistas , Trastornos Parkinsonianos/metabolismo , Fagocitosis/efectos de los fármacos , Tiobarbitúricos/farmacología , Animales , Línea Celular , Citocinas/metabolismo , Modelos Animales de Enfermedad , Humanos , Lipopolisacáridos/farmacología , Masculino , Ratones Endogámicos C57BL , Microglía/fisiología , Microesferas , PPAR gamma/metabolismo , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA