Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Eur J Neurosci ; 59(11): 3009-3029, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38576159

RESUMEN

Metabolic disorders are risk factors for stroke exacerbating subsequent complications. Rapidly after brain injury, a glial scar forms, preventing excessive inflammation and limiting axonal regeneration. Despite the growing interest in wound healing following brain injury, the formation of a glial scar in the context of metabolic disorders is poorly documented. In this study, we used db/db mice to investigate the impact of metabolic perturbations on brain repair mechanisms, with a focus on glial scarring. First, we confirmed the development of obesity, poor glucose regulation, hyperglycaemia and liver steatosis in these mice. Then, we observed that 3 days after a 30-min middle cerebral artery occlusion (MCAO), db/db mice had larger infarct area compared with their control counterparts. We next investigated reactive gliosis and glial scar formation in db/+ and db/db mice. We demonstrated that astrogliosis and microgliosis were exacerbated 3 days after stroke in db/db mice. Furthermore, we also showed that the synthesis of extracellular matrix (ECM) proteins (i.e., chondroitin sulphate proteoglycan, collagen IV and tenascin C) was increased in db/db mice. Consequently, we demonstrated for the first time that metabolic disorders impair reactive gliosis post-stroke and increase ECM deposition. Given that the damage size is known to influence glial scar, this study now raises the question of the direct impact of hyperglycaemia/obesity on reactive gliosis and glia scar. It paves the way to promote the development of new therapies targeting glial scar formation to improve functional recovery after stroke in the context of metabolic disorders.


Asunto(s)
Cicatriz , Gliosis , Infarto de la Arteria Cerebral Media , Animales , Gliosis/metabolismo , Gliosis/patología , Ratones , Cicatriz/metabolismo , Cicatriz/patología , Infarto de la Arteria Cerebral Media/metabolismo , Neuroglía/metabolismo , Neuroglía/patología , Masculino , Ratones Endogámicos C57BL , Enfermedades Metabólicas/metabolismo , Enfermedades Metabólicas/etiología , Accidente Cerebrovascular/metabolismo , Accidente Cerebrovascular/patología , Obesidad/metabolismo , Obesidad/complicaciones , Proteínas de la Matriz Extracelular/metabolismo , Hiperglucemia/metabolismo
2.
Anesthesiology ; 132(4): 825-838, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32101976

RESUMEN

BACKGROUND: High-density lipoproteins exert pleiotropic effects including antiinflammatory, antiapoptotic, and lipopolysaccharide-neutralizing properties. The authors assessed the effects of reconstituted high-density lipoproteins (CSL-111) intravenous injection in different models of sepsis. METHODS: Ten-week-old C57BL/6 mice were subjected to sepsis by cecal ligation and puncture or intraperitoneal injection of Escherichia coli or Pseudomonas aeruginosa pneumonia. CSL-111 or saline solution was administrated 2 h after the sepsis. Primary outcome was survival. Secondary outcomes were plasma cell-free DNA and cytokine concentrations, histology, bacterial count, and biodistribution. RESULTS: Compared with saline, CSL-111 improved survival in cecal ligation and puncture and intraperitoneal models (13 of 16 [81%] survival rate vs. 6 of 16 [38%] in the cecal ligation and puncture model; P = 0.011; 4 of 10 [40%] vs. 0 of 10 [0%] in the intraperitoneal model; P = 0.011). Cell-free DNA concentration was lower in CSL-111 relative to saline groups (68 [24 to 123] pg/ml vs. 351 [333 to 683] pg/ml; P < 0.001). Mice injected with CSL-111 presented a decreased bacterial count at 24 h after the cecal ligation and puncture model both in plasma (200 [28 to 2,302] vs. 2,500 [953 to 3,636] colony-forming unit/ml; P = 0.021) and in the liver (1,359 [360 to 1,648] vs. 1,808 [1,464 to 2,720] colony-forming unit/ml; P = 0.031). In the pneumonia model, fewer bacteria accumulated in liver and lung of the CSL-111 group. CSL-111-injected mice had also less lung inflammation versus saline mice (CD68+ to total cells ratio: saline, 0.24 [0.22 to 0.27]; CSL-111, 0.07 [0.01 to 0.09]; P < 0.01). In all models, no difference was found for cytokine concentration. Indium bacterial labeling underlined a potential hepatic bacterial clearance possibly promoted by high-density lipoprotein uptake. CONCLUSIONS: CSL-111 infusion improved survival in different experimental mouse models of sepsis. It reduced inflammation in both plasma and organs and decreased bacterial count. These results emphasized the key role for high-density lipoproteins in endothelial and organ protection, but also in lipopolysaccharide/bacteria clearance. This suggests an opportunity to explore the therapeutic potential of high-density lipoproteins in septic conditions.


Asunto(s)
HDL-Colesterol/administración & dosificación , Modelos Animales de Enfermedad , Lipoproteínas HDL/administración & dosificación , Fosfatidilcolinas/administración & dosificación , Sepsis/tratamiento farmacológico , Sepsis/metabolismo , Animales , HDL-Colesterol/química , Femenino , Humanos , Lipoproteínas HDL/química , Masculino , Ratones , Ratones Endogámicos C57BL , Fosfatidilcolinas/química , Distribución Tisular/efectos de los fármacos , Distribución Tisular/fisiología
3.
Molecules ; 25(19)2020 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-33003608

RESUMEN

Antirhea borbonica (A. borbonica) is an endemic plant from the Mascarene archipelago in the Indian Ocean commonly used in traditional medicine for its health benefits. This study aims (1) at exploring polyphenols profiles from two types of extracts-aqueous (herbal infusion) and acetonic (polyphenol rich) extracts from A. borbonica leaves-and (2) at evaluating their potential toxicity in vivo for the first time. We first demonstrated that, whatever type of extraction is used, both extracts displayed significant antioxidant properties and acid phenolic and flavonoid contents. By using selective liquid chromatography-tandem mass spectrometry, we performed polyphenol identification and quantification. Among the 19 identified polyphenols, we reported that the main ones were caffeic acid derivatives and quercetin-3-O-rutinoside. Then, we performed a Fish Embryo Acute Toxicity test to assess the toxicity of both extracts following the Organisation for Economic Cooperation and Development (OECD) guidelines. In both zebrafish embryos and larvae, the polyphenols-rich extract obtained by acetonic extraction followed by evaporation and resuspension in water exhibits a higher toxic effect with a median lethal concentration (LC50: 5.6 g/L) compared to the aqueous extract (LC50: 20.3 g/L). Our data also reveal that at non-lethal concentrations of 2.3 and 7.2 g/L for the polyphenol-rich extract and herbal infusion, respectively, morphological malformations such as spinal curvature, pericardial edema, and developmental delay may occur. In conclusion, our study strongly suggests that the evaluation of the toxicity of medicinal plants should be systematically carried out and considered when studying therapeutic effects on living organisms.


Asunto(s)
Fenoles/análisis , Extractos Vegetales/química , Hojas de la Planta/química , Plantas Medicinales/química , Polifenoles/análisis , Rubiaceae/química , Pruebas de Toxicidad , Pez Cebra/embriología , Animales , Antioxidantes/farmacología , Embrión no Mamífero/anomalías , Embrión no Mamífero/efectos de los fármacos , Larva/efectos de los fármacos , Fenoles/toxicidad , Polifenoles/toxicidad , Análisis de Supervivencia
4.
Mol Nutr Food Res ; 67(11): e2200670, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36949666

RESUMEN

SCOPE: Lactic acid fermentation (LAF) modulates the composition of food, leading to changes in safety, sensory, and nutritional properties. The effects of lactic fermented pineapple juice (FJ) supplementation on energetic metabolism of high-fat diet (HFD) fed mice are compared with either water (control), sweetened water (SW), bacteria in SW, and pineapple juice (J) supplementation. METHODS AND RESULTS: Drink consumption and body weight are measured during the 6 weeks of experiment, whereas glycemia and lipid content are determined at the beginning and at the end of the experiment. Total energy intake is similar between all groups though the volume of juice consumed is lower than that of SWs. Weight gain is higher for mice provided with sugary drinks (5.65 ± 1.32 to 7.74 ± 2.98 g) compared to water (4.68 ± 0.93 g). The FJ is less detrimental to blood carbohydrate regulation than other sugary drinks. Triglyceride (TG) and total cholesterol content are not modified following fermented juice or water consumption, contrarily to other sugary drinks. Whatever the drink, intestinal permeability is preserved. Lactic acid bacterium (LAB) population in feces is not affected by the beverage but species composition is modified. CONCLUSION: From a health perspective, FJ is preferable to other sugary drinks to limit metabolic disorders related to HFD.


Asunto(s)
Ananas , Enfermedades Metabólicas , Bebidas Azucaradas , Animales , Ratones , Dieta Alta en Grasa/efectos adversos , Bebidas , Agua
5.
Antioxidants (Basel) ; 11(7)2022 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-35883799

RESUMEN

Obesity has reached epidemic proportions, and its prevalence tripled worldwide between 1975 and 2016, especially in Reunion Island, a French overseas region. Psiloxylon mauritianum, an endemic medicinal plant from Reunion Island registered in the French pharmacopeia, has recently gained interest in combating metabolic disorders because of its traditional lipid-lowering and "anti-diabetic" use. However, scientific data are lacking regarding its toxicity and its real benefits on metabolic diseases. In this study, we aim to determine the toxicity of an aqueous extract of P. mauritianum on zebrafish eleutheroembryos following the OECD toxicity assay (Organization for Economic Cooperation and Development, guidelines 36). After defining a non-toxic dose, we determined by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) that this extract is rich in gallic acid but contains also caffeoylquinic acid, kaempferol and quercetin, as well as their respective derivatives. We also showed that the non-toxic dose exhibits lipid-lowering effects in a high-fat-diet zebrafish larvae model. In a next step, we demonstrated its preventive effects on body weight gain, hyperglycemia and liver steatosis in a diet-induced obesity model (DIO) performed in adults. It also limited the deleterious effects of overfeeding on the central nervous system (i.e., cerebral oxidative stress, blood-brain barrier breakdown, neuro-inflammation and blunted neurogenesis). Interestingly, adult DIO fish treated with P. mauritianum display normal feeding behavior but higher feces production. This indicates that the "anti-weight-gain" effect is probably due to the action of P. mauritianum on the intestinal lipid absorption and/or on the microbiota, leading to the increase in feces production. Therefore, in our experimental conditions, the aqueous extract of P. mauritianum exhibited "anti-weight-gain" properties, which prevented the development of obesity and its deleterious effects at the peripheral and central levels. These effects should be further investigated in preclinical models of obese/diabetic mice, as well as the impact of P. mauritianum on the gut microbiota.

6.
Front Pharmacol ; 13: 832928, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35359845

RESUMEN

Hypericum lanceolatum Lam. (H. lanceolatum) is a traditional medicinal plant from Reunion Island used for its pleiotropic effects mainly related to its antioxidant activity. The present work aimed to 1) determine the potential toxicity of the plant aqueous extract in vivo and 2) investigate its putative biological properties using several zebrafish models of oxidative stress, regeneration, estrogenicity, neurogenesis and metabolic disorders. First, we characterized the polyphenolic composition by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and identified chlorogenic acid isomers, quercetin and kaempferol derivatives as the major compounds. We then evaluated for the first time the toxicity of an aqueous extract of H. lanceolatum and determined a maximum non-toxic concentration (MNTC) in zebrafish eleutheroembryos from 0 to 96 hpf following OECD (Organization for Economic Cooperation and Development) guidelines. This MNTC test was also determined on hatched eleutheroembryos after 2 days of treatment (from 3 to 5 dpf). In our study, the anti-estrogenic effects of H. lanceolatum are supported by the data from the EASZY assay. In a tail amputation model, we showed that H. lanceolatum at its MNTC displays antioxidant properties, favors immune cell recruitment and tissue regeneration. Our results also highlighted its beneficial effects in metabolic disorders. Indeed, H. lanceolatum efficiently reduces lipid accumulation and body mass index in overfed larva- and adult-models, respectively. In addition, we show that H. lanceolatum did not improve fasting blood glucose levels in a hyperglycemic zebrafish model but surprisingly inhibited neurogenesis impairment observed in diabetic conditions. In conclusion, our study highlights the antioxidant, pro-regenerative, anti-lipid accumulation and pro-neurogenic effects of H. lanceolatum in vivo and supports the use of this traditional medicinal plant as a potential alternative in the prevention and/or treatment of metabolic disorders.

7.
Antioxidants (Basel) ; 11(5)2022 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-35624723

RESUMEN

Metabolic disorders related to obesity and type 2 diabetes are associated with aggravated cerebrovascular damages during stroke. In particular, hyperglycemia alters redox and inflammatory status, leading to cerebral endothelial cell dysfunction, blood-brain barrier (BBB) disruption and brain homeostasis loss. Polyphenols constitute the most abundant dietary antioxidants and exert anti-inflammatory effects that may improve cerebrovascular complications in stroke. This study evaluated the effects of the characterized polyphenol-rich extract of Antirhea borbonica medicinal plant and its major constituent caffeic acid on a high-fat diet (HFD)-induced obesity mouse model during ischemic stroke, and murine bEnd3 cerebral endothelial cells in high glucose condition. In vivo, polyphenols administered by oral gavage for 12 weeks attenuated insulin resistance, hyperglycemia, hyperinsulinemia and dyslipidemia caused by HFD-induced obesity. Polyphenols limited brain infarct, hemorrhagic transformation and BBB disruption aggravated by obesity during stroke. Polyphenols exhibited anti-inflammatory and antioxidant properties by reducing IL-1ß, IL-6, MCP-1, TNF-α and Nrf2 overproduction as well as total SOD activity elevation at the cerebral or peripheral levels in obese mice. In vitro, polyphenols decreased MMP-2 activity that correlated with MCP-1 secretion and ROS intracellular levels in hyperglycemic condition. Protective effects of polyphenols were linked to their bioavailability with evidence for circulating metabolites including caffeic acid, quercetin and hippuric acid. Altogether, these findings show that antioxidant polyphenols reduced cerebrovascular, inflammatory and metabolic disorders aggravated by obesity in a mouse model of stroke. It will be relevant to assess polyphenol-based strategies to improve the clinical consequences of stroke in the context of obesity and diabetes.

8.
Zebrafish ; 18(3): 190-206, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34028307

RESUMEN

Overweight and obesity are worldwide epidemic health threats. They recently emerged as disruptors of brain homeostasis leading to a wide variety of neurologic disorders. This study aims at developing a fast and easy overfeeding model using zebrafish for investigating the impact of overweight on brain homeostasis. We established a 4-week overfeeding protocol using commercially available dry food in an ad libitum-like feeding. In the diet-induced obesity/overweight (DIO) fish model, weight, size, and body mass index were increased compared with controls. Also, DIO fish displayed hyperglycemia, and had higher levels of advanced glycation end products and oxidative stress (4-hydroxynonenal [4-HNE]) in a peripheral organ (tail). Although overfed fish did not display major blood-brain barrier leakage, they showed an increased cerebral oxidative stress, blunted brain cell proliferation as well as a striking decreased locomotor activity. Interestingly, switching from an overfeeding to a normal diet partially improved peripheral and central disruptions induced by overfeeding in solely 2 weeks. As a conclusion, this study provides a rapid and easy overfeeding model in zebrafish with relevant peripheral and central disruptions. This model could open the way for further investigations to better understand by which mechanisms overfeeding could disturb brain homeostasis. It also reinforces and contrasts with another zebrafish overweight model, showing that the type of the food provided could impair differently brain homeostasis.


Asunto(s)
Hiperfagia , Pez Cebra , Animales , Encéfalo/metabolismo , Homeostasis , Hiperglucemia , Obesidad/etiología
9.
Biomedicines ; 9(4)2021 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-33808509

RESUMEN

The renal fibrotic process is characterized by a chronic inflammatory state and oxidative stress. Antirhea borbonica (A. borbonica) is a French medicinal plant found in Reunion Island and known for its antioxidant and anti-inflammatory activities mostly related to its high polyphenols content. We investigated whether oral administration of polyphenol-rich extract from A. borbonica could exert in vivo a curative anti-renal fibrosis effect. To this aim, three days after unilateral ureteral obstruction (UUO), mice were daily orally treated either with a non-toxic dose of polyphenol-rich extract from A. borbonica or with caffeic acid (CA) for 5 days. The polyphenol-rich extract from A. borbonica, as well as CA, the predominant phenolic acid of this medicinal plant, exerted a nephroprotective effect through the reduction in the three phases of the fibrotic process: (i) macrophage infiltration, (ii) myofibroblast appearance and (iii) extracellular matrix accumulation. These effects were associated with the mRNA down-regulation of Tgf-ß, Tnf-α, Mcp1 and NfkB, as well as the upregulation of Nrf2. Importantly, we observed an increased antioxidant enzyme activity for GPX and Cu/ZnSOD. Last but not least, desorption electrospray ionization-high resolution/mass spectrometry (DESI-HR/MS) imaging allowed us to visualize, for the first time, CA in the kidney tissue. The present study demonstrates that polyphenol-rich extract from A. borbonica significantly improves, in a curative way, renal tubulointerstitial fibrosis progression in the UUO mouse model.

10.
Sci Rep ; 10(1): 7239, 2020 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-32350316

RESUMEN

Leptospirosis is caused by pathogenic Leptospira transmitted through contact with contaminated environments. Most mammalian species are infectable by Leptospira but only few act as efficient reservoir being capable of establishing long term kidney colonization and shedding Leptospira in urine. In Madagascar, a large diversity of pathogenic Leptospira display a tight specificity towards their endemic volant or terrestrial mammalian hosts. The basis of this specificity is unknown: it may indicate some genetically determined compatibility between host cells and bacteria or only reflect ecological constraints preventing contacts between specific hosts. In this study, Rattus norvegicus was experimentally infected with either Leptospira interrogans, Leptospira borgpetersenii or Leptospira mayottensis isolated from rats, bats or tenrecs, respectively. Leptospira borgpetersenii and L. mayottensis do not support renal colonization as featured by no shedding of live bacteria in urine and low level and sporadic detection of Leptospira DNA in kidneys. In contrast 2 out of the 7 R. norvegicus challenged with L. interrogans developed renal colonization and intense Leptospira shedding in urine throughout the 3 months of experimental infection. These data suggest that host-Leptospira specificity in this biodiversity hotspot is driven at least in part by genetic determinants likely resulting from long-term co-diversification processes.


Asunto(s)
Biodiversidad , Leptospira , Leptospirosis , Animales , ADN Bacteriano/metabolismo , Femenino , Riñón/metabolismo , Riñón/microbiología , Riñón/patología , Leptospira/aislamiento & purificación , Leptospira/metabolismo , Leptospira/patogenicidad , Leptospirosis/metabolismo , Leptospirosis/microbiología , Leptospirosis/patología , Ratas , Ratas Wistar , Especificidad de la Especie
11.
Sci Rep ; 10(1): 14496, 2020 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-32879342

RESUMEN

Overweight and obesity are worldwide health concerns leading to many physiological disorders. Recent data highlighted their deleterious effects on brain homeostasis and plasticity, but the mechanisms underlying such disruptions are still not well understood. In this study, we developed and characterized a fast and reliable diet-induced overweight (DIO) model in zebrafish, for (1) studying the effects of overfeeding on brain homeostasis and for (2) testing different preventive and/or therapeutic strategies. By overfeeding zebrafish for 4 weeks, we report the disruption of many metabolic parameters reproducing human overweight features including increased body weight, body mass index, fasting blood glucose levels and liver steatosis. Furthermore, DIO fish displayed blood-brain barrier leakage, cerebral oxidative stress, neuroinflammation and decreased neurogenesis. Finally, we investigated the preventive beneficial effects of A. borbonica, an endogenous plant from Reunion Island. Overnight treatment with A. borbonica aqueous extract during the 4 weeks of overfeeding limited some detrimental central effects of DIO. In conclusion, we established a relevant DIO model in zebrafish demonstrating that overfeeding impairs peripheral and central homeostasis. This work also highlights the preventive protective effects of A. borbonica aqueous extracts in DIO, and opens a way to easily screen drugs aiming at limiting overweight and associated neurological disorders.


Asunto(s)
Peso Corporal/efectos de los fármacos , Encéfalo/fisiología , Homeostasis , Neurogénesis/efectos de los fármacos , Sobrepeso/veterinaria , Extractos Vegetales/farmacología , Rubiaceae/química , Animales , Glucemia/metabolismo , Barrera Hematoencefálica , Índice de Masa Corporal , Modelos Animales de Enfermedad , Hígado Graso/tratamiento farmacológico , Femenino , Inflamación , Insulina/metabolismo , Resistencia a la Insulina , Masculino , Obesidad/tratamiento farmacológico , Obesidad/veterinaria , Sobrepeso/tratamiento farmacológico , Oxidación-Reducción , Estrés Oxidativo , Pez Cebra
12.
Endocrinology ; 147(9): 4067-78, 2006 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16777972

RESUMEN

Activation of the peroxisome proliferator-activated receptor (PPAR)-alpha increases lipid catabolism and lowers the concentration of circulating lipid, but its role in the control of glucose metabolism is not as clearly established. Here we compared PPARalpha knockout mice with wild type and confirmed that the former developed hypoglycemia during fasting. This was associated with only a slight increase in insulin sensitivity but a dramatic increase in whole-body and adipose tissue glucose use rates in the fasting state. The white sc and visceral fat depots were larger due to an increase in the size and number of adipocytes, and their level of GLUT4 expression was higher and no longer regulated by the fed-to-fast transition. To evaluate whether these adipocyte deregulations were secondary to the absence of PPARalpha from liver, we reexpresssed this transcription factor in the liver of knockout mice using recombinant adenoviruses. Whereas more than 90% of the hepatocytes were infected and PPARalpha expression was restored to normal levels, the whole-body glucose use rate remained elevated. Next, to evaluate whether brain PPARalpha could affect glucose homeostasis, we activated brain PPARalpha in wild-type mice by infusing WY14643 into the lateral ventricle and showed that whole-body glucose use was reduced. Hence, our data show that PPARalpha is involved in the regulation of glucose homeostasis, insulin sensitivity, fat accumulation, and adipose tissue glucose use by a mechanism that does not require PPARalpha expression in the liver. By contrast, activation of PPARalpha in the brain stimulates peripheral glucose use. This suggests that the alteration in adipocyte glucose metabolism in the knockout mice may result from the absence of PPARalpha in the brain.


Asunto(s)
Tejido Adiposo/metabolismo , Encéfalo/fisiología , Transportador de Glucosa de Tipo 4/análisis , Glucosa/metabolismo , Hígado/fisiología , PPAR alfa/deficiencia , Adipocitos/citología , Adipocitos/metabolismo , Tejido Adiposo/química , Animales , Glucemia/análisis , Composición Corporal , Encéfalo/efectos de los fármacos , Tamaño de la Célula , Ayuno , Femenino , Hepatocitos/metabolismo , Hipotálamo/química , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuropéptidos/genética , PPAR alfa/fisiología , Proliferadores de Peroxisomas/administración & dosificación , Pirimidinas/administración & dosificación , ARN Mensajero/análisis , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA