Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Infect Dis ; 219(1): 89-100, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30107546

RESUMEN

Objective: Immune activation is associated with morbidity and mortality during human immunodeficiency virus (HIV) infection, despite receipt of antiretroviral therapy (ART). We investigated whether microbial translocation drives immune activation in HIV-infected Ugandan children. Methods: Nineteen markers of immune activation and inflammation were measured over 96 weeks in HIV-infected Ugandan children in the CHAPAS-3 Trial and HIV-uninfected age-matched controls. Microbial translocation was assessed using molecular techniques, including next-generation sequencing. Results: Of 249 children included, 142 were infected with HIV; of these, 120 were ART naive, with a median age of 2.8 years (interquartile range [IQR], 1.7-4.0 years) and a median baseline CD4+ T-cell percentage of 20% (IQR, 14%-24%), and 22 were ART experienced, with a median age of 6.5 years (IQR, 5.9-9.2 years) and a median baseline CD4+ T-cell percentage of 35% (IQR, 31%-39%). The control group comprised 107 children without HIV infection. The median increase in the CD4+ T-cell percentage was 17 percentage points (IQR, 12-22 percentage points) at week 96 among ART-naive children, and the viral load was <100 copies/mL in 76% of ART-naive children and 91% of ART-experienced children. Immune activation decreased with ART use. Children could be divided on the basis of immune activation markers into the following 3 clusters: in cluster 1, the majority of children were HIV uninfected; cluster 2 comprised a mix of HIV-uninfected children and HIV-infected ART-naive or ART-experienced children; and in cluster 3, the majority were ART naive. Immune activation was low in cluster 1, decreased in cluster 3, and persisted in cluster 2. Blood microbial DNA levels were negative or very low across groups, with no difference between clusters except for Enterobacteriaceae organisms (the level was higher in cluster 1; P < .0001). Conclusion: Immune activation decreased with ART use, with marker clustering indicating different activation patterns according to HIV and ART status. Levels of bacterial DNA in blood were low regardless of HIV status, ART status, and immune activation status. Microbial translocation did not drive immune activation in this setting. Clinical Trials Registration: ISRCTN69078957.


Asunto(s)
Traslocación Bacteriana/inmunología , Biomarcadores/sangre , Infecciones por VIH/inmunología , Traslocación Bacteriana/genética , Recuento de Linfocito CD4 , Niño , Preescolar , ADN Bacteriano/sangre , ADN Ribosómico , Femenino , Infecciones por VIH/sangre , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/microbiología , Humanos , Lactante , Inflamación , Masculino , Uganda , Carga Viral
2.
Clin Infect Dis ; 68(2): 222-228, 2019 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-29800111

RESUMEN

Background: Norovirus is a leading cause of worldwide and nosocomial gastroenteritis. The study aim was to assess the utility of molecular epidemiology using full genome sequences compared to routine infection prevention and control (IPC) investigations. Methods: Norovirus genomes were generated from new episodes of norovirus at a pediatric tertiary referral hospital over a 19-month period (n = 182). Phylogeny identified clusters of related sequences that were verified using epidemiological and clinical data. Results: Twenty-four clusters of related norovirus sequences ("sequence clusters") were observed, including 8 previously identified by IPC investigations ("IPC outbreaks"). Seventeen sequence clusters (involving 77/182 patients) were corroborated by epidemiological data ("epidemiologically supported clusters"), suggesting transmission between patients. Linked infections were identified among 44 patients who were missed by IPC investigations. Thirty-three percent of norovirus sequences were linked, suggesting nosocomial transmission; 24% of patients had nosocomial infections from an unknown source; and 43% were norovirus positive on admission. Conclusions: We show there are frequent introductions of multiple norovirus strains with extensive onward nosocomial transmission of norovirus in a pediatric hospital with a high proportion of immunosuppressed patients nursed in isolation. Phylogenetic analysis using full genome sequences is more sensitive than classic IPC investigations for identifying linked cases and should be considered when investigating norovirus nosocomial transmission. Sampling of staff, visitors, and the environment may be required for complete understanding of infection sources and transmission routes in patients with nosocomial infections not linked to other patients and among patients with phylogenetically linked cases but no evidence of direct contact.


Asunto(s)
Infecciones por Caliciviridae/transmisión , Infecciones por Caliciviridae/virología , Infección Hospitalaria/transmisión , Infección Hospitalaria/virología , Genoma Viral , Norovirus/genética , Niño , Brotes de Enfermedades , Gastroenteritis/virología , Genotipo , Hospitales Pediátricos , Humanos , Filogenia
3.
J Infect Dis ; 218(8): 1261-1271, 2018 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-29917114

RESUMEN

Background: Adenoviruses are significant pathogens for the immunocompromised, arising from primary infection or reinfection. Serotyping is insufficient to support nosocomial transmission investigations. We investigate whether whole-genome sequencing (WGS) provides clinically relevant information on transmission among patients in a pediatric tertiary hospital. Methods: We developed a target-enriched adenovirus WGS technique for clinical samples and retrospectively sequenced 107 adenovirus-positive residual diagnostic samples, including viremias (>5 × 104 copies/mL), from 37 patients collected January 2011-March 2016. Whole-genome sequencing was used to determine genotype and for phylogenetic analysis. Results: Adenovirus sequences were recovered from 105 of 107 samples. Full genome sequences were recovered from all 20 nonspecies C samples and from 36 of 85 species C viruses, with partial genome sequences recovered from the rest. Whole-genome phylogenetic analysis suggested linkage of 3 genotype A31 cases and uncovered an unsuspected epidemiological link to an A31 infection first detected on the same ward 4 years earlier. In 9 samples from 1 patient who died, we identified a mixed genotype adenovirus infection. Conclusions: Adenovirus WGS from clinical samples is possible and useful for genotyping and molecular epidemiology. Whole-genome sequencing identified likely nosocomial transmission with greater resolution than conventional genotyping and distinguished between adenovirus disease due to single or multiple genotypes.


Asunto(s)
Adenoviridae/genética , Infecciones por Adenovirus Humanos/virología , Infección Hospitalaria/virología , Genotipo , Huésped Inmunocomprometido , Secuenciación Completa del Genoma , Adenoviridae/clasificación , Infecciones por Adenovirus Humanos/transmisión , Adolescente , Niño , Preescolar , Infección Hospitalaria/transmisión , Genómica , Humanos , Lactante , Epidemiología Molecular , Filogenia
4.
J Infect Dis ; 218(10): 1592-1601, 2018 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-29986093

RESUMEN

Background: Varicella zoster virus (VZV) may cause encephalitis, both with and without rash. Here we investigate whether viruses recovered from the central nervous system (CNS; encephalitis or meningitis) differ genetically from those recovered from non-CNS samples. Methods: Enrichment-based deep sequencing of 45 VZV genomes from cerebral spinal fluid (CSF), plasma, bronchoalveolar lavage (BAL), and vesicles was carried out with samples collected from 34 patients with and without VZV infection of the CNS. Results: Viral sequences from multiple sites in the same patient were identical at the consensus level. Virus from vesicle fluid and CSF in cases of meningitis showed low-level diversity. By contrast, plasma, BAL, and encephalitis had higher numbers of variant alleles. Two CSF-encephalitis samples had high genetic diversity, with variant frequency patterns typical of mixed infections with different clades. Conclusions: Low viral genetic diversity in vesicle fluid is compatible with previous observations that VZV skin lesions arise from single or low numbers of virions. A similar result was observed in VZV from cases of VZV meningitis, a generally self-limiting infection. CSF from cases of encephalitis had higher diversity with evidence for mixed clade infections in 2 cases. We hypothesize that reactivation from multiple neurons may contribute to the pathogenesis of VZV encephalitis.


Asunto(s)
ADN Viral/líquido cefalorraquídeo , Encefalitis por Varicela Zóster/virología , Herpesvirus Humano 3/clasificación , Herpesvirus Humano 3/genética , Adulto , Anciano , Anciano de 80 o más Años , Niño , Preescolar , Estudios de Cohortes , Coinfección/virología , Vesículas Citoplasmáticas/virología , Variación Genética , Genoma Viral/genética , Humanos , Persona de Mediana Edad , Carga Viral , Adulto Joven
5.
J Clin Immunol ; 38(8): 938-939, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30430354

RESUMEN

The original version of this article unfortunately did not display the appropriate captions in the figure. The correct version is displayed below.

6.
Rev Med Virol ; 27(3): e1926, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28271593

RESUMEN

Norovirus is acknowledged to be a leading cause of acute gastroenteritis worldwide, and its importance as a cause of chronic infection in immune deficient hosts is increasingly recognised. Current evidence suggests that a coordinated response of innate immune mechanisms, CD8+ cytotoxicity and a humoral response, with CD4+ orchestration, is necessary for norovirus clearance. We explain how primary immune deficiency impairs these host defences and predisposes to chronic infection, associated with protracted diarrhoea, weight loss, and requirement for parenteral nutrition. The mucosal villous atrophy frequently seen in norovirus infection appears to be immune mediated, suggesting that some functional immune response is required in order for chronic norovirus infection to become symptomatic in primary immune deficiency. We provide a comprehensive summary of published cases of norovirus infection in patients with primary immune deficiency. Spontaneous viral clearance has been described; however, the majority of reported cases have had prolonged and severe illness. Treatment strategies are discussed in detail. Approaches that have been tried in patients with primary immune deficiency include exclusion diets, enteral and intravenous immunoglobulins, breast milk, immunosuppressants, ribavirin, and nitazoxanide. To date, only ribavirin has been used with apparent success to achieve clearance of chronic norovirus in primary immune deficiency, and randomised controlled trials are needed to evaluate a number of promising therapies that are discussed.

7.
Clin Infect Dis ; 65(12): 2122-2125, 2017 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-29020238
8.
Acta Neuropathol ; 133(1): 139-147, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27770235

RESUMEN

Routine childhood vaccination against measles, mumps and rubella has virtually abolished virus-related morbidity and mortality. Notwithstanding this, we describe here devastating neurological complications associated with the detection of live-attenuated mumps virus Jeryl Lynn (MuVJL5) in the brain of a child who had undergone successful allogeneic transplantation for severe combined immunodeficiency (SCID). This is the first confirmed report of MuVJL5 associated with chronic encephalitis and highlights the need to exclude immunodeficient individuals from immunisation with live-attenuated vaccines. The diagnosis was only possible by deep sequencing of the brain biopsy. Sequence comparison of the vaccine batch to the MuVJL5 isolated from brain identified biased hypermutation, particularly in the matrix gene, similar to those found in measles from cases of SSPE. The findings provide unique insights into the pathogenesis of paramyxovirus brain infections.


Asunto(s)
Encéfalo/virología , Encefalitis Viral/virología , Vacuna contra la Parotiditis/efectos adversos , Virus de la Parotiditis/aislamiento & purificación , Biopsia , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Enfermedad Crónica , Encefalitis Viral/complicaciones , Encefalitis Viral/diagnóstico por imagen , Encefalitis Viral/terapia , Resultado Fatal , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Lactante , Masculino , Virus de la Parotiditis/genética , Inmunodeficiencia Combinada Grave/complicaciones , Inmunodeficiencia Combinada Grave/diagnóstico por imagen , Inmunodeficiencia Combinada Grave/terapia
9.
J Infect Dis ; 214(9): 1399-1402, 2016 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-27571904

RESUMEN

We report the first use of whole viral genome sequencing to identify nosocomial transmission of varicella-zoster virus with fatal outcome. The index case patient, nursed in source isolation, developed disseminated zoster with rash present for 1 day before being transferred to the intensive care unit (ICU). Two patients who had received renal transplants while inpatients in an adjacent ward developed chickenpox and 1 died; neither patient had direct contact with the index patient.


Asunto(s)
Varicela/transmisión , Varicela/virología , Infección Hospitalaria/transmisión , Infección Hospitalaria/virología , Genoma Viral/genética , Herpesvirus Humano 3/genética , Anciano , Femenino , Herpes Zóster/transmisión , Herpes Zóster/virología , Humanos , Unidades de Cuidados Intensivos , Trasplante de Riñón/efectos adversos , Masculino , Persona de Mediana Edad
10.
Clin Infect Dis ; 62(9): 1136-1138, 2016 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-26908782

RESUMEN

Norovirus incidence was compared between severe combined immunodeficiency children with (n = 10) and without (n = 8) B cells. 60% of B+ and 63% of B- patients developed norovirus infections therefore norovirus replication in B lymphocytes is not essential for infection.


Asunto(s)
Linfocitos B/virología , Infecciones por Caliciviridae/patología , Norovirus/inmunología , Inmunodeficiencia Combinada Grave/virología , Adolescente , Linfocitos B/patología , Infecciones por Caliciviridae/inmunología , Niño , Preescolar , Humanos , Lactante , Estudios Retrospectivos
12.
J Clin Microbiol ; 54(10): 2530-7, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27487952

RESUMEN

Norovirus full-genome sequencing is challenging due to sequence heterogeneity among genomes. Previous methods have relied on PCR amplification, which is problematic due to primer design, and transcriptome sequencing (RNA-Seq), which nonspecifically sequences all RNA, including host and bacterial RNA, in stool specimens. Target enrichment uses a panel of custom-designed 120-mer RNA baits that are complementary to all publicly available norovirus sequences, with multiple baits targeting each position of the genome, which overcomes the challenge of primer design. Norovirus genomes are enriched from stool RNA extracts to minimize the sequencing of nontarget RNA. SureSelect target enrichment and Illumina sequencing were used to sequence full genomes from 507 norovirus-positive stool samples with reverse transcription-real-time PCR cycle threshold (CT) values of 10 to 43. Sequencing on an Illumina MiSeq system in batches of 48 generated, on average, 81% on-target reads per sample and 100% genome coverage with >12,000-fold read depth. Samples included genotypes GI.1, GI.2, GI.3, GI.6, GI.7, GII.1, GII.2, GII.3, GII.4, GII.5, GII.6, GII.7, GII.13, GII.14, and GII.17. When outliers were accounted for, we generated >80% genome coverage for all positive samples, regardless of CT values. A total of 164 samples were tested in parallel with conventional PCR genotyping of the capsid shell domain; 164/164 samples were successfully sequenced, compared to 158/164 samples that were amplified by PCR. Four of the samples that failed capsid PCR analysis had low titers, which suggests that target enrichment is more sensitive than gel-based PCR. Two samples failed PCR due to primer mismatches; target enrichment uses multiple baits targeting each position, thus accommodating sequence heterogeneity among norovirus genomes.


Asunto(s)
Heces/virología , Genoma Viral , Norovirus/aislamiento & purificación , Hibridación de Ácido Nucleico/métodos , ARN Viral/genética , Análisis de Secuencia de ADN/métodos , Manejo de Especímenes/métodos , Infecciones por Caliciviridae/virología , Humanos , Masculino , Norovirus/genética
13.
J Virol ; 89(14): 7133-46, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25926648

RESUMEN

UNLABELLED: Varicella-zoster virus (VZV) is a human herpesvirus, which during primary infection typically causes varicella (chicken pox) and establishes lifelong latency in sensory and autonomic ganglia. Later in life, the virus may reactivate to cause herpes zoster (HZ; also known as shingles). To prevent these diseases, a live-attenuated heterogeneous vaccine preparation, vOka, is used routinely in many countries worldwide. Recent studies of another alphaherpes virus, infectious laryngotracheitis virus, demonstrate that live-attenuated vaccine strains can recombine in vivo, creating virulent progeny. These findings raised concerns about using attenuated herpesvirus vaccines under conditions that favor recombination. To investigate whether VZV may undergo recombination, which is a prerequisite for VZV vaccination to create such conditions, we here analyzed 115 complete VZV genomes. Our results demonstrate that recombination occurs frequently for VZV. It thus seems that VZV is fully capable of recombination if given the opportunity, which may have important implications for continued VZV vaccination. Although no interclade vaccine wild-type recombinant strains were found, intraclade recombinants were frequently detected in clade 2, which harbors the vaccine strains, suggesting that the vaccine strains have already been involved in recombination events, either in vivo or in vitro during passages in cell culture. Finally, previous partial and complete genomic studies have described strains that do not cluster phylogenetically to any of the five established clades. The additional VZV strains sequenced here, in combination with those previously published, have enabled us to formally define a novel sixth VZV clade. IMPORTANCE: Although genetic recombination has been demonstrated to frequently occur for other human alphaherpesviruses, herpes simplex viruses 1 and 2, only a few ancient and isolated recent recombination events have hitherto been demonstrated for VZV. In the present study, we demonstrate that VZV also frequently undergoes genetic recombination, including strains belonging to the clade containing the vOKA strain.


Asunto(s)
Herpesvirus Humano 3/genética , Recombinación Genética , Adulto , Niño , Preescolar , Análisis por Conglomerados , ADN Viral/química , ADN Viral/genética , Variación Genética , Genoma Viral , Herpesvirus Humano 3/aislamiento & purificación , Humanos , Datos de Secuencia Molecular , Filogenia , Análisis de Secuencia de ADN , Homología de Secuencia
14.
Transpl Infect Dis ; 18(6): 960-964, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27632248

RESUMEN

Neuroinvasive astrovirus (VA1-HMO-C) is an emerging life-threatening infection in immunocompromised hosts. We describe an 8-month-old child who died of VA1/HMO-C encephalitis following bone marrow transplantation. The diagnosis was only made post-mortem using RNA deep sequencing of the brain. Repeat analysis of the post-mortem brain tissue using polymerase chain reaction specific primers for VA1/HMO-C was positive. Astrovirus VA1/HMO-C should be included in the evaluation of patients with similar encephalitis.


Asunto(s)
Infecciones por Astroviridae/virología , Trasplante de Médula Ósea/efectos adversos , Encefalitis Viral/virología , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Inmunosupresores/efectos adversos , Leucemia Mieloide Aguda/cirugía , Mamastrovirus/aislamiento & purificación , Infecciones Oportunistas/virología , Acondicionamiento Pretrasplante/efectos adversos , Biopsia , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Cromosomas Humanos Par 10/genética , Cromosomas Humanos Par 11/genética , Diarrea/etiología , Encefalitis Viral/líquido cefalorraquídeo , Encefalitis Viral/diagnóstico por imagen , Encefalitis Viral/patología , Enteritis/complicaciones , Enteritis/virología , Resultado Fatal , Heces/virología , Femenino , Enfermedad Injerto contra Huésped/tratamiento farmacológico , Humanos , Huésped Inmunocomprometido , Inmunosupresores/administración & dosificación , Inmunosupresores/uso terapéutico , Lactante , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Imagen por Resonancia Magnética , ARN Viral/aislamiento & purificación , Análisis de Secuencia de ARN , Translocación Genética
15.
Clin Infect Dis ; 60(6): 881-8, 2015 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-25572899

RESUMEN

BACKGROUND: An 18-month-old boy developed encephalopathy, for which extensive investigation failed to identify an etiology, 6 weeks after stem cell transplant. To exclude a potential infectious cause, we performed high-throughput RNA sequencing on brain biopsy. METHODS: RNA-Seq was performed on an Illumina Miseq, generating 20 million paired-end reads. Nonhost data were checked for similarity to known organisms using BLASTx. The full viral genome was sequenced by primer walking. RESULTS: We identified an astrovirus, HAstV-VA1/HMO-C-UK1(a), which was highly divergent from human astrovirus (HAstV 1-8) genotypes, but closely related to VA1/HMO-C astroviruses, including one recovered from a case of fatal encephalitis in an immunosuppressed child. The virus was detected in stool and serum, with highest levels in brain and cerebrospinal fluid (CSF). Immunohistochemistry of the brain biopsy showed positive neuronal staining. A survey of 680 stool and 349 CSF samples identified a related virus in the stool of another immunosuppressed child. CONCLUSIONS: The discovery of HAstV-VA1/HMO-C-UK1(a) as the cause of encephalitis in this case provides further evidence that VA1/HMO-C viruses, unlike HAstV 1-8, are neuropathic, particularly in immunocompromised patients, and should be considered in the differential diagnosis of encephalopathy. With a turnaround from sample receipt to result of <1 week, we confirm that RNA-Seq presents a valuable diagnostic tool in unexplained encephalitis.


Asunto(s)
Infecciones por Astroviridae/virología , Encéfalo/patología , Encefalitis Viral/diagnóstico , Encefalitis Viral/patología , Huésped Inmunocomprometido , Mamastrovirus/patogenicidad , Infecciones por Astroviridae/diagnóstico , Infecciones por Astroviridae/patología , Secuencia de Bases , Biopsia , Encéfalo/ultraestructura , Encefalitis Viral/virología , Heces/virología , Genoma Viral , Genotipo , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Lactante , Masculino , Mamastrovirus/genética , Mamastrovirus/aislamiento & purificación , Filogenia , Prevalencia , ARN Viral/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Análisis de Secuencia de ADN , Análisis de Secuencia de ARN , Trasplante de Células Madre
16.
J Clin Microbiol ; 53(7): 2230-7, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25972414

RESUMEN

The rapid identification of antimicrobial resistance is essential for effective treatment of highly resistant Mycobacterium tuberculosis. Whole-genome sequencing provides comprehensive data on resistance mutations and strain typing for monitoring transmission, but unlike for conventional molecular tests, this has previously been achievable only from cultures of M. tuberculosis. Here we describe a method utilizing biotinylated RNA baits designed specifically for M. tuberculosis DNA to capture full M. tuberculosis genomes directly from infected sputum samples, allowing whole-genome sequencing without the requirement of culture. This was carried out on 24 smear-positive sputum samples, collected from the United Kingdom and Lithuania where a matched culture sample was available, and 2 samples that had failed to grow in culture. M. tuberculosis sequencing data were obtained directly from all 24 smear-positive culture-positive sputa, of which 20 were of high quality (>20× depth and >90% of the genome covered). Results were compared with those of conventional molecular and culture-based methods, and high levels of concordance between phenotypical resistance and predicted resistance based on genotype were observed. High-quality sequence data were obtained from one smear-positive culture-negative case. This study demonstrated for the first time the successful and accurate sequencing of M. tuberculosis genomes directly from uncultured sputa. Identification of known resistance mutations within a week of sample receipt offers the prospect for personalized rather than empirical treatment of drug-resistant tuberculosis, including the use of antimicrobial-sparing regimens, leading to improved outcomes.


Asunto(s)
Técnicas Bacteriológicas/métodos , Farmacorresistencia Bacteriana , Técnicas de Genotipaje/métodos , Mycobacterium tuberculosis/genética , Manejo de Especímenes/métodos , Esputo/microbiología , Tuberculosis Pulmonar/microbiología , Humanos , Lituania , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/aislamiento & purificación , Análisis de Secuencia de ADN/métodos , Factores de Tiempo , Tuberculosis Pulmonar/diagnóstico , Reino Unido
19.
BMC Infect Dis ; 14: 591, 2014 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-25388670

RESUMEN

BACKGROUND: Chlamydia trachomatis is a pathogen of worldwide importance, causing more than 100 million cases of sexually transmitted infections annually. Whole-genome sequencing is a powerful high resolution tool that can be used to generate accurate data on bacterial population structure, phylogeography and mutations associated with antimicrobial resistance. The objective of this study was to perform whole-genome enrichment and sequencing of C. trachomatis directly from clinical samples. METHODS: C. trachomatis positive samples comprising seven vaginal swabs and three urine samples were sequenced without prior in vitro culture in addition to nine cultured C. trachomatis samples, representing different serovars. A custom capture RNA bait set, that captures all known diversity amongst C. trachomatis genomes, was used in a whole-genome enrichment step during library preparation to enrich for C. trachomatis DNA. All samples were sequenced on the MiSeq platform. RESULTS: Full length C. trachomatis genomes (>95-100% coverage of a reference genome) were successfully generated for eight of ten clinical samples and for all cultured samples. The proportion of reads mapping to C. trachomatis and the mean read depth across each genome were strongly linked to the number of bacterial copies within the original sample. Phylogenetic analysis confirmed the known population structure and the data showed potential for identification of minority variants and mutations associated with antimicrobial resistance. The sensitivity of the method was >10-fold higher than other reported methodologies. CONCLUSIONS: The combination of whole-genome enrichment and deep sequencing has proven to be a non-mutagenic approach, capturing all known variation found within C. trachomatis genomes. The method is a consistent and sensitive tool that enables rapid whole-genome sequencing of C. trachomatis directly from clinical samples and has the potential to be adapted to other pathogens with a similar clonal nature.


Asunto(s)
Infecciones por Chlamydia/microbiología , Chlamydia trachomatis/genética , Secuencia de Bases , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Filogenia , Análisis de Secuencia de ADN
20.
Genome Med ; 16(1): 111, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39252069

RESUMEN

BACKGROUND: Metagenomics is a powerful approach for the detection of unknown and novel pathogens. Workflows based on Illumina short-read sequencing are becoming established in diagnostic laboratories. However, high sequencing depth requirements, long turnaround times, and limited sensitivity hinder broader adoption. We investigated whether we could overcome these limitations using protocols based on untargeted sequencing with Oxford Nanopore Technologies (ONT), which offers real-time data acquisition and analysis, or a targeted panel approach, which allows the selective sequencing of known pathogens and could improve sensitivity. METHODS: We evaluated detection of viruses with readily available untargeted metagenomic workflows using Illumina and ONT, and an Illumina-based enrichment approach using the Twist Bioscience Comprehensive Viral Research Panel (CVRP), which targets 3153 viruses. We tested samples consisting of a dilution series of a six-virus mock community in a human DNA/RNA background, designed to resemble clinical specimens with low microbial abundance and high host content. Protocols were designed to retain the host transcriptome, since this could help confirm the absence of infectious agents. We further compared the performance of commonly used taxonomic classifiers. RESULTS: Capture with the Twist CVRP increased sensitivity by at least 10-100-fold over untargeted sequencing, making it suitable for the detection of low viral loads (60 genome copies per ml (gc/ml)), but additional methods may be needed in a diagnostic setting to detect untargeted organisms. While untargeted ONT had good sensitivity at high viral loads (60,000 gc/ml), at lower viral loads (600-6000 gc/ml), longer and more costly sequencing runs would be required to achieve sensitivities comparable to the untargeted Illumina protocol. Untargeted ONT provided better specificity than untargeted Illumina sequencing. However, the application of robust thresholds standardized results between taxonomic classifiers. Host gene expression analysis is optimal with untargeted Illumina sequencing but possible with both the CVRP and ONT. CONCLUSIONS: Metagenomics has the potential to become standard-of-care in diagnostics and is a powerful tool for the discovery of emerging pathogens. Untargeted Illumina and ONT metagenomics and capture with the Twist CVRP have different advantages with respect to sensitivity, specificity, turnaround time and cost, and the optimal method will depend on the clinical context.


Asunto(s)
Metagenómica , Virus , Metagenómica/métodos , Humanos , Virus/genética , Virus/aislamiento & purificación , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Virosis/diagnóstico , Virosis/virología , Metagenoma , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA