Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Cardiovasc Pharmacol ; 79(5): 730-738, 2022 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-35121714

RESUMEN

ABSTRACT: Hyperhomocysteinemia is an independent risk factor for atherosclerosis. It is known that macrophage autophagy plays a protective role in atherosclerosis and that hyperhomocysteinemia is strongly linked to autophagy. Therefore, it is of great significance to study the molecular mechanisms underlying the effect of homocysteine (Hcy) on macrophage autophagy. This study aimed to investigate the effects of Hcy on autophagy in a human acute monocytic leukemia cell line (THP-1). The Hcy-treated THP-1 cells exhibited increased levels of the autophagy substrate SQSTM1 (p62) and decreased levels of the autophagy markers LC3 II/I and Beclin-1, indicating a decrease in autophagy in vitro. Furthermore, Western blotting showed that Hcy significantly increased the levels of p-mTOR and nuclear TFEB and decreased the levels of p-AMPK and cytoplasmic TFEB. These data suggest that Hcy inhibits autophagosome formation in human THP-1 macrophages through the AMPK-mTOR-TFEB signaling pathway. Our findings provide new insights into the mechanisms of atherosclerotic diseases caused by Hcy.


Asunto(s)
Aterosclerosis , Hiperhomocisteinemia , Proteínas Quinasas Activadas por AMP/metabolismo , Aterosclerosis/metabolismo , Autofagia , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/farmacología , Niño , Homocisteína/toxicidad , Humanos , Macrófagos , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo
2.
Open Life Sci ; 18(1): 20220790, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38027228

RESUMEN

Oxidative stress is closely linked to tumor initiation and development, conferring a survival advantage to cancer cells. Therefore, understanding cancer cells' antioxidant molecular mechanisms is crucial to cancer therapy. In this study, we discovered that H2O2-induced oxidative stress increased Nrf3 expression in colon cancer cells. Overexpression of Nrf3 decreased H2O2-mediated cytotoxicity and apoptosis. Furthermore, Nrf3 reduced reactive oxygen species levels and malondialdehyde concentrations after H2O2 treatment. Mechanistically, H2O2-mediated cell apoptosis involves multiple signaling proteins, including Akt, bcl-2, JNK, and p38. An increase in Nrf3 expression in colon cancer cells treated with H2O2 partly reversed Akt/Bcl-2 inhibition, whereas it decreased activation of p38 and JNK. In addition, we found that increasing Nrf3 decreased stress-associated chemical-induced cell death, resulting in drug resistance. According to these results, Nrf3 is critical for drug resistance and oxidant adaptation.

3.
J Oncol ; 2021: 9355555, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34795760

RESUMEN

Increasing evidence indicates that nuclear factor, erythroid 2-like 3 (Nrf3) is connected with tumorigenesis. However, the relationship between Nrf3 and tumor drug resistance remains elusive. In this study, we investigated the effect and mechanism of action by which Nrf3 regulated the sensitivity of colon cancer cells to 5-fluorouracil (5-FU). We found Nrf3 was significantly increased in colon cancer tissues. Furthermore, we observed that Nrf3 knockdown and overexpression can significantly affect the sensitivity of colon cancer cells to 5-FU in vitro and in vivo. Moreover, Nrf3 promoted the expression of RELA, P-RELA, and BCL-2. Inhibition of NF-κB partly reversed the effects of Nrf3 overexpression, resulting in the resistance of colon cancer cells to 5-FU. Overall, the study revealed that Nrf3 was connected to the sensitivity of colon cancer cells to 5-FU, and its possible mechanism was related to the NF-κB signaling pathway, which provided a new target for overcoming the resistance of colon cancer cells to 5-FU.

4.
Artículo en Inglés | MEDLINE | ID: mdl-34306152

RESUMEN

This study aimed to investigate the inhibitory effect of 12-epi-napelline on leukemia cells and its possible mechanisms. The inhibitory effects of 12-epi-napelline on K-562 and HL-60 cells were evaluated using the CCK-8 assay, cell cycle arrest and apoptosis were detected by flow cytometry, and the expression of related proteins was measured by western blot. A K-562 tumor model was established to evaluate the antitumor effect of 12-epi-napelline in vivo. A reduction in leukemia cell viability was observed after treatment with 12-epi-napelline. It was determined that the cell cycle was arrested in the G0/G1 phase, and the cell apoptosis rate was increased. Moreover, caspase-3 and Bcl-2 were downregulated, whereas cleaved caspase-3 and caspase-9 were upregulated. Further study revealed that 12-epi-napelline could suppress the expression of PI3K, AKT, p-AKT, and mTOR. Insulin-like growth factor 1 (IGF-1) attenuated 12-epi-napelline-induced apoptosis and ameliorated the repression of PI3K, AKT, p-AKT, and mTOR by 12-epi-napelline. Animal experiments clearly showed that 12-epi-napelline inhibited tumor growth. In conclusion, 12-epi-napelline restrained leukemia cell proliferation by suppressing the PI3K/AKT/mTOR pathway in vitro and in vivo.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA