Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Clin Sci (Lond) ; 137(19): 1513-1531, 2023 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-37728308

RESUMEN

Myeloid cells, including macrophages, play important roles as first responders to cardiac injury and stress. Epidermal growth factor receptor (EGFR) has been identified as a mediator of macrophage responsiveness to select diseases, though its impact on cardiac function or remodeling following acute ischemic injury is unknown. We aimed to define the role of myeloid cell-specific EGFR in the regulation of cardiac function and remodeling following acute myocardial infarction (MI)-induced injury. Floxed EGFR mice were bred with homozygous LysM-Cre (LMC) transgenic mice to yield myeloid-specific EGFR knockout (mKO) mice. Via echocardiography, immunohistochemistry, RNA sequencing and flow cytometry, the impact of myeloid cell-specific EGFR deletion on cardiac structure and function was assessed at baseline and following injury. Compared with LMC controls, myeloid cell-specific EGFR deletion led to an increase in cardiomyocyte hypertrophy at baseline. Bulk RNASeq analysis of isolated cardiac Cd11b+ myeloid cells revealed substantial changes in mKO cell transcripts at baseline, particularly in relation to predicted decreases in neovascularization. In response to myocardial infarction, mKO mice experienced a hastened decline in cardiac function with isolated cardiac Cd11b+ myeloid cells expressing decreased levels of the pro-reparative mediators Vegfa and Il10, which coincided with enhanced cardiac hypertrophy and decreased capillary density. Overall, loss of EGFR qualitatively alters cardiac resident macrophages that promotes a low level of basal stress and a more rapid decrease in cardiac function along with worsened repair following acute ischemic injury.


Asunto(s)
Receptores ErbB , Infarto del Miocardio , Ratones , Animales , Receptores ErbB/genética , Receptores ErbB/metabolismo , Células Mieloides/metabolismo , Macrófagos/metabolismo , Corazón , Infarto del Miocardio/metabolismo , Ratones Transgénicos , Ratones Noqueados , Ratones Endogámicos C57BL , Remodelación Ventricular/genética
2.
Cardiovasc Drugs Ther ; 37(2): 245-256, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-34997361

RESUMEN

PURPOSE: ß-Adrenergic receptors (ßAR) are essential targets for the treatment of heart failure (HF); however, chronic use of ßAR agonists as positive inotropes to increase contractility in a Gs protein-dependent manner is associated with increased mortality. Alternatively, we previously reported that allosteric modulation of ß2AR with the pepducin intracellular loop (ICL)1-9 increased cardiomyocyte contractility in a ß-arrestin (ßarr)-dependent manner, and subsequently showed that ICL1-9 activates the Ras homolog family member A (RhoA). Here, we aimed to elucidate both the proximal and downstream signaling mediators involved in the promotion of cardiomyocyte contractility in response to ICL1-9. METHODS: We measured adult mouse cardiomyocyte contractility in response to ICL1-9 or isoproterenol (ISO, as a positive control) alone or in the presence of inhibitors of various potential components of ßarr- or RhoA-dependent signaling. We also assessed the contractile effects of ICL1-9 on cardiomyocytes lacking G protein-coupled receptor (GPCR) kinase 2 (GRK2) or 5 (GRK5). RESULTS: Consistent with RhoA activation by ICL1-9, both Rho-associated protein kinase (ROCK) and protein kinase D (PKD) inhibition were able to attenuate ICL1-9-mediated contractility, as was inhibition of myosin light chain kinase (MLCK). While neither GRK2 nor GRK5 deletion impacted ICL1-9-mediated contractility, pertussis toxin attenuated the response, suggesting that ICL1-9 promotes downstream RhoA-dependent signaling in a Gi protein-dependent manner. CONCLUSION: Altogether, our study highlights a novel signaling modality that may offer a new approach to the promotion, or preservation, of cardiac contractility during HF via the allosteric regulation of ß2AR to promote Gi protein/ßarr-dependent activation of RhoA/ROCK/PKD signaling.


Asunto(s)
Insuficiencia Cardíaca , Miocitos Cardíacos , Ratones , Animales , Transducción de Señal , Proteína Quinasa C/metabolismo , Proteína Quinasa C/farmacología , Insuficiencia Cardíaca/metabolismo , Contracción Miocárdica
3.
Proc Natl Acad Sci U S A ; 113(28): E4107-16, 2016 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-27354517

RESUMEN

ß-adrenergic receptors (ßARs) are critical regulators of acute cardiovascular physiology. In response to elevated catecholamine stimulation during development of congestive heart failure (CHF), chronic activation of Gs-dependent ß1AR and Gi-dependent ß2AR pathways leads to enhanced cardiomyocyte death, reduced ß1AR expression, and decreased inotropic reserve. ß-blockers act to block excessive catecholamine stimulation of ßARs to decrease cellular apoptotic signaling and normalize ß1AR expression and inotropy. Whereas these actions reduce cardiac remodeling and mortality outcomes, the effects are not sustained. Converse to G-protein-dependent signaling, ß-arrestin-dependent signaling promotes cardiomyocyte survival. Given that ß2AR expression is unaltered in CHF, a ß-arrestin-biased agonist that operates through the ß2AR represents a potentially useful therapeutic approach. Carvedilol, a currently prescribed nonselective ß-blocker, has been classified as a ß-arrestin-biased agonist that can inhibit basal signaling from ßARs and also stimulate cell survival signaling pathways. To understand the relative contribution of ß-arrestin bias to the efficacy of select ß-blockers, a specific ß-arrestin-biased pepducin for the ß2AR, intracellular loop (ICL)1-9, was used to decouple ß-arrestin-biased signaling from occupation of the orthosteric ligand-binding pocket. With similar efficacy to carvedilol, ICL1-9 was able to promote ß2AR phosphorylation, ß-arrestin recruitment, ß2AR internalization, and ß-arrestin-biased signaling. Interestingly, ICL1-9 was also able to induce ß2AR- and ß-arrestin-dependent and Ca(2+)-independent contractility in primary adult murine cardiomyocytes, whereas carvedilol had no efficacy. Thus, ICL1-9 is an effective tool to access a pharmacological profile stimulating cardioprotective signaling and inotropic effects through the ß2AR and serves as a model for the next generation of cardiovascular drug development.


Asunto(s)
Antagonistas Adrenérgicos beta/farmacología , Carbazoles/farmacología , Insuficiencia Cardíaca/tratamiento farmacológico , Lipopéptidos/farmacología , Contracción Miocárdica/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Propanolaminas/farmacología , Antagonistas Adrenérgicos beta/uso terapéutico , Animales , Carbazoles/uso terapéutico , Carvedilol , Línea Celular Tumoral , Evaluación Preclínica de Medicamentos , Células HEK293 , Humanos , Lipopéptidos/uso terapéutico , Ratones , Cultivo Primario de Células , Propanolaminas/uso terapéutico , Conformación Proteica/efectos de los fármacos , beta-Arrestinas/agonistas
4.
J Mol Cell Cardiol ; 123: 108-117, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30171848

RESUMEN

Increased G protein-coupled receptor kinase (GRK)2 is central to heart failure (HF) pathogenesis, via desensitization of ß-adrenergic receptors and loss of contractile reserve. Since GRK2 has been shown to compromise fatty acid (FA) oxidation, this kinase may link metabolic and contractile defects in HF. The aim of this study was to investigate the mechanistic role of GRK2 in FA metabolism and bioenergetics in the heart. For that purpose, we measured FA uptake and cluster of differentiation (CD)36 expression, phosphorylation, and ubiquitination in mice with cardiac-specific overexpression of GRK2 (TgGRK2) or expression of its c-terminus (GRK2 inhibitor- TgßARKct) or in global heterozygous GRK2 knockout (GRK2+/-) mice. Cellular bioenergetics were also measured in isolated cardiomyocytes following adenoviral delivery of exogenous GRK2, ßARKct, or short hairpin GRK2 (shGRK2). Additionally, CD36 expression and phosphorylation were evaluated following transverse aortic constriction (TAC) in wild type (WT) and GRK2+/- mice. Our results show a 33% ±â€¯0.81 reduction in FA uptake rate, accompanied by 51% ±â€¯0.17 lower CD36 protein, and 70% ±â€¯0.23 and 69% ±â€¯0.18 increases in CD36 phosphorylation and ubiquitination, respectively, in the TgGRK2 mice. Moreover, an in vitro kinase assay suggests that GRK2 directly phosphorylates CD36. In isolated cardiomyocytes, GRK2 overexpression induced a 26% ±â€¯2.21 decrease in maximal respiration, which was enhanced (20% ±â€¯4.02-5.14) with inhibition of the kinase. Importantly, in hearts with systolic dysfunction, notable reductions in CD36 mRNA and protein, as well as a significant increase in CD36 phosphorylation were normalized in the GRK2+/- mice post-TAC. Thus, we propose that GRK2 up-regulation in HF is, at least partly, responsible for reduced FA uptake and oxidation and may be a nodal link between metabolic and contractile defects.


Asunto(s)
Ácidos Grasos/metabolismo , Quinasa 2 del Receptor Acoplado a Proteína-G/metabolismo , Insuficiencia Cardíaca/metabolismo , Metabolismo de los Lípidos , Animales , Biomarcadores , Antígenos CD36/metabolismo , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Quinasa 2 del Receptor Acoplado a Proteína-G/genética , Insuficiencia Cardíaca/etiología , Insuficiencia Cardíaca/fisiopatología , Ratones , Ratones Noqueados , Ratones Transgénicos , Miocitos Cardíacos/metabolismo , Fosforilación
5.
Circulation ; 134(2): 153-67, 2016 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-27364164

RESUMEN

BACKGROUND: Immune cell-mediated inflammation is an essential process for mounting a repair response after myocardial infarction (MI). The sympathetic nervous system is known to regulate immune system function through ß-adrenergic receptors (ßARs); however, their role in regulating immune cell responses to acute cardiac injury is unknown. METHODS: Wild-type (WT) mice were irradiated followed by isoform-specific ßAR knockout (ßARKO) or WT bone-marrow transplantation (BMT) and after full reconstitution underwent MI surgery. Survival was monitored over time, and alterations in immune cell infiltration after MI were examined through immunohistochemistry. Alterations in splenic function were identified through the investigation of altered adhesion receptor expression. RESULTS: ß2ARKO BMT mice displayed 100% mortality resulting from cardiac rupture within 12 days after MI compared with ≈20% mortality in WT BMT mice. ß2ARKO BMT mice displayed severely reduced post-MI cardiac infiltration of leukocytes with reciprocally enhanced splenic retention of the same immune cell populations. Splenic retention of the leukocytes was associated with an increase in vascular cell adhesion molecule-1 expression, which itself was regulated via ß-arrestin-dependent ß2AR signaling. Furthermore, vascular cell adhesion molecule-1 expression in both mouse and human macrophages was sensitive to ß2AR activity, and spleens from human tissue donors treated with ß-blocker showed enhanced vascular cell adhesion molecule-1 expression. The impairments in splenic retention and cardiac infiltration of leukocytes after MI were restored to WT levels via lentiviral-mediated re-expression of ß2AR in ß2ARKO bone marrow before transplantation, which also resulted in post-MI survival rates comparable to those in WT BMT mice. CONCLUSIONS: Immune cell-expressed ß2AR plays an essential role in regulating the early inflammatory repair response to acute myocardial injury by facilitating cardiac leukocyte infiltration.


Asunto(s)
Rotura Cardíaca/etiología , Leucocitos/metabolismo , Infarto del Miocardio/complicaciones , Receptores Adrenérgicos beta 2/fisiología , Anciano , Anciano de 80 o más Años , Animales , Modelos Animales de Enfermedad , Femenino , Vectores Genéticos/uso terapéutico , Humanos , Macrófagos/metabolismo , Masculino , Metoprolol/farmacología , Ratones , Ratones Endogámicos C57BL , Infiltración Neutrófila , Quimera por Radiación , Receptores Adrenérgicos beta 2/deficiencia , Receptores Adrenérgicos beta 2/genética , Proteínas Recombinantes de Fusión/metabolismo , Bazo/metabolismo , Bazo/patología , Esplenectomía , Molécula 1 de Adhesión Celular Vascular/metabolismo
6.
Clin Sci (Lond) ; 130(22): 2017-2027, 2016 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-27589993

RESUMEN

Vasopressin type 1A receptor (V1AR) expression is elevated in chronic human heart failure (HF) and contributes to cardiac dysfunction in animal models, in part via reduced ß-adrenergic receptor (ßAR) responsiveness. Although cardiac V1AR overexpression and V1AR stimulation are each sufficient to decrease ßAR activity, it is unknown whether V1AR inhibition conversely augments ßAR responsiveness. Further, although V1AR has been shown to contribute to chronic progression of HF, its impact on cardiac function following acute ischaemic injury has not been reported. Using V1AR knockout (V1AR KO) mice we assessed the impact of V1AR deletion on cardiac contractility at baseline and following ischaemic injury, ßAR sensitivity and cardiomyocyte responsiveness to ßAR stimulation. Strikingly, baseline cardiac contractility was enhanced in V1AR KO mice and they experienced a greater loss in contractile function than control mice following acute ischaemic injury, although the absolute levels of cardiac dysfunction and survival rates did not differ. Enhanced cardiac contractility in V1AR KO mice was associated with augmented ß-blocker sensitivity, suggesting increased basal ßAR activity, and indeed levels of left ventricular cAMP, as well as phospholamban (PLB) and cardiac troponin I (cTnI) phosphorylation were elevated compared with control mice. At the cellular level, myocytes isolated from V1AR KO mice demonstrated increased responsiveness to ßAR stimulation consistent with the finding that acute pharmacological V1AR inhibition enhanced ßAR-mediated contractility in control myocytes. Therefore, although V1AR deletion does not protect the heart from the rapid development of cardiac dysfunction following acute ischaemic injury, its effects on ßAR activity suggest that acute V1AR inhibition could be utilized to promote myocyte contractile performance.

7.
Mol Pharmacol ; 88(2): 265-72, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25972448

RESUMEN

Emerging evidence indicates the involvement of GPR55 and its proposed endogenous ligand, lysophosphatidylinositol (LPI), in nociception, yet their role in central pain processing has not been explored. Using Ca(2+) imaging, we show here that LPI elicits concentration-dependent and GPR55-mediated increases in intracellular Ca(2+) levels in dissociated rat periaqueductal gray (PAG) neurons, which express GPR55 mRNA. This effect is mediated by Ca(2+) release from the endoplasmic reticulum via inositol 1,4,5-trisphosphate receptors and by Ca(2+) entry via P/Q-type of voltage-gated Ca(2+) channels. Moreover, LPI depolarizes PAG neurons and upon intra-PAG microinjection, reduces nociceptive threshold in the hot-plate test. Both these effects are dependent on GPR55 activation, because they are abolished by pretreatment with ML-193 [N-(4-(N-(3,4-dimethylisoxazol-5-yl)sulfamoyl)-phenyl)-6,8-dimethyl-2-(pyridin-2-yl)quinoline-4-carboxamide], a selective GPR55 antagonist. Thus, we provide the first pharmacological evidence that GPR55 activation at central levels is pronociceptive, suggesting that interfering with GPR55 signaling in the PAG may promote analgesia.


Asunto(s)
Calcio/metabolismo , Lisofosfolípidos/farmacología , Percepción del Dolor , Sustancia Gris Periacueductal/fisiología , Receptores de Cannabinoides/genética , Receptores de Cannabinoides/metabolismo , Animales , Animales Recién Nacidos , Células Cultivadas , Femenino , Masculino , Potenciales de la Membrana/efectos de los fármacos , Neuronas/fisiología , Ratas , Ratas Sprague-Dawley
8.
Circulation ; 130(20): 1800-11, 2014 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-25205804

RESUMEN

BACKGROUND: Enhanced arginine vasopressin levels are associated with increased mortality during end-stage human heart failure, and cardiac arginine vasopressin type 1A receptor (V1AR) expression becomes increased. Additionally, mice with cardiac-restricted V1AR overexpression develop cardiomyopathy and decreased ß-adrenergic receptor (ßAR) responsiveness. This led us to hypothesize that V1AR signaling regulates ßAR responsiveness and in doing so contributes to development of heart failure. METHODS AND RESULTS: Transaortic constriction resulted in decreased cardiac function and ßAR density and increased cardiac V1AR expression, effects reversed by a V1AR-selective antagonist. Molecularly, V1AR stimulation led to decreased ßAR ligand affinity, as well as ßAR-induced Ca(2+) mobilization and cAMP generation in isolated adult cardiomyocytes, effects recapitulated via ex vivo Langendorff analysis. V1AR-mediated regulation of ßAR responsiveness was demonstrated to occur in a previously unrecognized Gq protein-independent/G protein receptor kinase-dependent manner. CONCLUSIONS: This newly discovered relationship between cardiac V1AR and ßAR may be informative for the treatment of patients with acute decompensated heart failure and elevated arginine vasopressin.


Asunto(s)
Cardiomiopatía Hipertrófica/fisiopatología , Contracción Miocárdica/fisiología , Receptores Adrenérgicos beta/fisiología , Receptores de Vasopresinas/fisiología , Sistemas de Mensajero Secundario/fisiología , Animales , Antagonistas de los Receptores de Hormonas Antidiuréticas/farmacología , Arginina Vasopresina/farmacología , Señalización del Calcio/efectos de los fármacos , Cardiomiopatía Hipertrófica/complicaciones , Gatos , Línea Celular Tumoral , Colforsina/farmacología , AMP Cíclico/biosíntesis , Quinasas de Receptores Acoplados a Proteína-G/fisiología , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/genética , Genes Reporteros , Células HEK293 , Insuficiencia Cardíaca/etiología , Insuficiencia Cardíaca/fisiopatología , Humanos , Indoles/farmacología , Isoproterenol/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mutagénesis Sitio-Dirigida , Contracción Miocárdica/efectos de los fármacos , Pirrolidinas/farmacología , Receptores de Vasopresinas/biosíntesis , Receptores de Vasopresinas/genética , Proteínas Recombinantes de Fusión/metabolismo , Rolipram/farmacología , Sistemas de Mensajero Secundario/efectos de los fármacos
9.
Am J Physiol Heart Circ Physiol ; 308(4): H316-30, 2015 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-25485901

RESUMEN

Chronic stimulation of ß-adrenergic receptors (ßAR) can promote survival signaling via transactivation of epidermal growth factor receptor (EGFR) but ultimately alters cardiac structure and contractility over time, in part via enhanced cytokine signaling. We hypothesized that chronic catecholamine signaling will have a temporal impact on cardiac transcript expression in vivo, in particular cytokines, and that EGFR transactivation plays a role in this process. C57BL/6 mice underwent infusion with vehicle or isoproterenol (Iso)±gefitinib (Gef) for 1 or 2 wk. Cardiac contractility decreased following 2 wk of Iso treatment, while cardiac hypertrophy, fibrosis, and apoptosis were enhanced at both timepoints. Inclusion of Gef preserved contractility, blocked Iso-induced apoptosis, and prevented hypertrophy at the 2-wk timepoint, but caused fibrosis on its own. RNAseq analysis revealed hundreds of cardiac transcripts altered by Iso at each timepoint with subsequent RT-quantitative PCR validation confirming distinct temporal patterns of transcript regulation, including those involved in cardiac remodeling and survival signaling, as well as numerous cytokines. Although Gef infusion alone did not significantly alter cytokine expression, it abrogated the Iso-mediated changes in a majority of the ßAR-sensitive cytokines, including CCL2 and TNF-α. Additionally, the impact of ßAR-dependent EGFR transactivation on the acute regulation of cytokine transcript expression was assessed in isolated cardiomyocytes and in cardiac fibroblasts, where the majority of Iso-dependent, and EGFR-sensitive, changes in cytokines occurred. Overall, coincident with changes in cardiac structure and contractility, ßAR stimulation dynamically alters cardiac transcript expression over time, including numerous cytokines that are regulated via EGFR-dependent signaling.


Asunto(s)
Agonistas Adrenérgicos beta/farmacología , Cardiomegalia/metabolismo , Quimiocina CCL2/metabolismo , Isoproterenol/farmacología , Miocitos Cardíacos/metabolismo , Quinazolinas/farmacología , Factor de Necrosis Tumoral alfa/metabolismo , Animales , Apoptosis , Cardiomegalia/fisiopatología , Células Cultivadas , Quimiocina CCL2/genética , Receptores ErbB/antagonistas & inhibidores , Fibrosis/metabolismo , Fibrosis/fisiopatología , Gefitinib , Ventrículos Cardíacos/metabolismo , Ventrículos Cardíacos/patología , Ventrículos Cardíacos/fisiopatología , Masculino , Ratones , Ratones Endogámicos C57BL , Contracción Miocárdica , Miocitos Cardíacos/efectos de los fármacos , Miofibroblastos/efectos de los fármacos , Miofibroblastos/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Factor de Necrosis Tumoral alfa/genética , Remodelación Ventricular
10.
J Mol Cell Cardiol ; 72: 39-51, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24566221

RESUMEN

ß-Adrenergic receptor (ßAR)-mediated transactivation of epidermal growth factor receptor (EGFR) has been shown to relay pro-survival effects via unknown mechanisms. We hypothesized that acute ßAR-mediated EGFR transactivation in the heart promotes differential subcellular activation of ERK1/2 and Akt, promoting cell survival through modulation of apoptosis. C57BL/6 mice underwent acute i.p. injection with isoproterenol (ISO)±AG 1478 (EGFR antagonist) to assess the impact of ßAR-mediated EGFR transactivation on the phosphorylation of ERK1/2 (P-ERK1/2) and Akt (P-Akt) in distinct cardiac subcellular fractions. Increased P-ERK1/2 and P-Akt were observed in cytosolic, plasma membrane and nuclear fractions following ISO stimulation. Whereas the P-ERK1/2 response was EGFR-sensitive in all fractions, the P-Akt response was EGFR-sensitive only in the plasma membrane and nucleus, results confirmed in primary rat neonatal cardiomyocytes (RNCM). ßAR-mediated EGFR-transactivation also decreased apoptosis in serum-depleted RNCM, as measured via TUNEL as well as caspase 3 activity/cleavage, which were sensitive to the inhibition of either ERK1/2 (PD184352) or Akt (LY-294002) signaling. Caspase 3 activity/cleavage was also sensitive to the inhibition of transcription, which, with an increase in nuclear P-ERK1/2 and P-Akt in response to ISO, suggested that ßAR-mediated EGFR transactivation may regulate apoptotic gene transcription. An Apoptosis PCR Array identified tnfsf10 (TRAIL) to be altered by ISO in an EGFR-sensitive manner, results confirmed via RT-PCR and ELISA measurement of both membrane-bound and soluble cardiomyocyte TRAIL levels. ßAR-mediated EGFR transactivation induces differential subcellular activation of ERK1/2 and Akt leading to increased cell survival through the modulation of caspase 3 activity and apoptotic gene expression in cardiomyocytes.


Asunto(s)
Receptores ErbB/genética , Proteína Quinasa 1 Activada por Mitógenos/genética , Proteína Quinasa 3 Activada por Mitógenos/genética , Miocitos Cardíacos/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Receptores Adrenérgicos beta/genética , Agonistas Adrenérgicos beta/farmacología , Animales , Animales Recién Nacidos , Apoptosis/efectos de los fármacos , Apoptosis/genética , Caspasa 3/genética , Caspasa 3/metabolismo , Gatos , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/metabolismo , Regulación de la Expresión Génica , Isoproterenol/farmacología , Ratones , Ratones Endogámicos C57BL , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Miocitos Cardíacos/citología , Miocitos Cardíacos/efectos de los fármacos , Fosforilación , Cultivo Primario de Células , Proteínas Proto-Oncogénicas c-akt/metabolismo , Quinazolinas/farmacología , Ratas , Ratas Sprague-Dawley , Receptores Adrenérgicos beta/metabolismo , Transducción de Señal , Tirfostinos/farmacología
11.
J Biol Chem ; 288(31): 22481-92, 2013 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-23814062

RESUMEN

The L-α-lysophosphatidylinositol (LPI)-sensitive receptor GPR55 is coupled to Ca(2+) signaling. Low levels of GPR55 expression in the heart have been reported. Similar to other G protein-coupled receptors involved in cardiac function, GPR55 may be expressed both at the sarcolemma and intracellularly. Thus, to explore the role of GPR55 in cardiomyocytes, we used calcium and voltage imaging and extracellular administration or intracellular microinjection of GPR55 ligands. We provide the first evidence that, in cultured neonatal ventricular myocytes, LPI triggers distinct signaling pathways via GPR55, depending on receptor localization. GPR55 activation at the sarcolemma elicits, on one hand, Ca(2+) entry via L-type Ca(2+) channels and, on the other, inositol 1,4,5-trisphosphate-dependent Ca(2+) release. The latter signal is further amplified by Ca(2+)-induced Ca(2+) release via ryanodine receptors. Conversely, activation of GPR55 at the membrane of intracellular organelles promotes Ca(2+) release from acidic-like Ca(2+) stores via the endolysosomal NAADP-sensitive two-pore channels. This response is similarly enhanced by Ca(2+)-induced Ca(2+) release via ryanodine receptors. Extracellularly applied LPI produces Ca(2+)-independent membrane depolarization, whereas the Ca(2+) signal induced by intracellular microinjection of LPI converges to hyperpolarization of the sarcolemma. Collectively, our findings point to GPR55 as a novel G protein-coupled receptor regulating cardiac function at two cellular sites. This work may serve as a platform for future studies exploring the potential of GPR55 as a therapeutic target in cardiac disorders.


Asunto(s)
Miocitos Cardíacos/metabolismo , Receptores de Cannabinoides/fisiología , Receptores Acoplados a Proteínas G/fisiología , Animales , Animales Recién Nacidos , Células Cultivadas , Orgánulos/metabolismo , Ratas , Ratas Sprague-Dawley
12.
bioRxiv ; 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-38076917

RESUMEN

Myeloid cells, including neutrophils, monocytes and macrophages, accumulate quickly after ischemic injury in the heart where they play integral roles in the regulation of inflammation and repair. We previously reported that deletion of ß2-adrenergic receptor (ß2AR) in all cells of hematopoietic origin resulted in generalized disruption of immune cell responsiveness to injury, but with unknown impact on myeloid cells specifically. To investigate this, we crossed floxed ß2AR (F/F) mice with myeloid cell-expressing Cre (LysM-Cre) mice to generate myeloid cell-specific ß2AR knockout mice (LB2) and subjected them to myocardial infarction (MI). Via echocardiography and immunohistochemical analyses, LB2 mice displayed better cardiac function and less fibrotic remodeling after MI than the control lines. Despite similar accumulation of myeloid cell subsets in the heart at 1-day post-MI, LB2 mice displayed reduced numbers of Nu by 4 days post-MI, suggesting LB2 hearts have enhanced capacity for Nu efferocytosis. Indeed, bone marrow-derived macrophage (BMDM)-mediated efferocytosis of Nu was enhanced in LB2-versus F/F-derived cells in vitro. Mechanistically, several pro-efferocytosis-related genes were increased in LB2 myeloid cells, with annexin A1 ( Anxa1 ) in particular elevated in several myeloid cell types following MI. Accordingly, shRNA-mediated knockdown of Anxa1 in LB2 bone marrow prior to transplantation into irradiated LB2 mice reduced Mac-induced Nu efferocytosis in vitro and prevented the ameliorative effects of myeloid cell-specific ß2AR deletion on cardiac function and fibrosis following MI in vivo. Altogether, our data reveal a previously unrecognized role for ß2AR in the regulation of myeloid cell-dependent efferocytosis in the heart following injury.

13.
Cardiovasc Res ; 118(5): 1276-1288, 2022 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-33892492

RESUMEN

AIMS: Epidermal growth factor receptor (EGFR) is essential to the development of multiple tissues and organs and is a target of cancer therapeutics. Due to the embryonic lethality of global EGFR deletion and conflicting reports of cardiac-overexpressed EGFR mutants, its specific impact on the adult heart, normally or in response to chronic stress, has not been established. Using complimentary genetic strategies to modulate cardiomyocyte-specific EGFR expression, we aim to define its role in the regulation of cardiac function and remodelling. METHODS AND RESULTS: A floxed EGFR mouse model with α-myosin heavy chain-Cre-mediated cardiomyocyte-specific EGFR downregulation (CM-EGFR-KD mice) developed contractile dysfunction by 9 weeks of age, marked by impaired diastolic relaxation, as monitored via echocardiographic, haemodynamic, and isolated cardiomyocyte contractility analyses. This contractile defect was maintained over time without overt cardiac remodelling until 10 months of age, after which the mice ultimately developed severe heart failure and reduced lifespan. Acute downregulation of EGFR in adult floxed EGFR mice with adeno-associated virus 9 (AAV9)-encoded Cre with a cardiac troponin T promoter (AAV9-cTnT-Cre) recapitulated the CM-EGFR-KD phenotype, while AAV9-cTnT-EGFR treatment of adult CM-EGFR-KD mice rescued the phenotype. Notably, chronic administration of the ß-adrenergic receptor agonist isoproterenol effectively and reversibly compensated for the contractile dysfunction in the absence of cardiomyocyte hypertrophy in CM-EGFR-KD mice. Mechanistically, EGFR downregulation reduced the expression of protein phosphatase 2A regulatory subunit Ppp2r3a/PR72, which was associated with decreased phosphorylation of phospholamban and Ca2+ clearance, and whose re-expression via AAV9-cTnT-PR72 rescued the CM-EGFR-KD phenotype. CONCLUSIONS: Altogether, our study highlights a previously unrecognized role for EGFR in maintaining contractile homeostasis under physiologic conditions in the adult heart via regulation of PR72 expression.


Asunto(s)
Receptores ErbB , Contracción Miocárdica , Miocitos Cardíacos , Animales , Dependovirus , Receptores ErbB/genética , Receptores ErbB/metabolismo , Isoproterenol/farmacología , Ratones , Contracción Miocárdica/fisiología , Miocitos Cardíacos/metabolismo , Troponina T/genética
14.
Cell Signal ; 78: 109846, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33238186

RESUMEN

ß1-adrenergic receptor (ß1AR)-mediated transactivation of epidermal growth factor receptor (EGFR) engages downstream signaling events that impact numerous cellular processes including growth and survival. While association of these receptors has been shown to occur basally and be important for relaying transactivation-specific intracellular events, the mechanism by which they do so is unclear and elucidation of which would aid in understanding the consequence of disrupting their interaction. Using fluorescence resonance energy transfer (FRET) and immunoprecipitation (IP) analyses, we evaluated the impact of C-terminal truncations of EGFR on its ability to associate with ß1AR. While loss of the last 230 amino acid C-terminal phosphotyrosine-rich domain did not disrupt the ability of EGFR to associate with ß1AR, truncation of the entire intracellular domain of EGFR resulted in almost complete loss of its interaction with ß1AR, suggesting that either the kinase domain or juxtamembrane domain (JMD) may be required for this association. Treatment with the EGFR antagonist gefitinib did not prevent ß1AR-EGFR association, however, treatment with a palmitoylated peptide encoding the first 20 amino acids of the JMD domain (JMD-A) disrupted ß1AR-EGFR association over time and prevented ß1AR-mediated ERK1/2 phosphorylation, both in general and specifically in association with EGFR. Conversely, neither a mutated JMD-A peptide nor a palmitoylated peptide fragment consisting of the subsequent 18 amino acids of the JMD domain (JMD-B) were capable of doing so. Altogether, the proximal region of the JMD of EGFR is responsible for its association with ß1AR, and its disruption prevents ß1AR-mediated transactivation, thus providing a new tool to study the functional consequences of disrupting ß1AR-EGFR downstream signaling.


Asunto(s)
Receptores Adrenérgicos beta 1/metabolismo , Transducción de Señal , Línea Celular Tumoral , Receptores ErbB/química , Receptores ErbB/genética , Receptores ErbB/metabolismo , Humanos , Péptidos/química , Péptidos/genética , Péptidos/farmacología , Dominios Proteicos , Receptores Adrenérgicos beta 1/química , Receptores Adrenérgicos beta 1/genética
15.
Mol Pharmacol ; 76(6): 1341-8, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19759354

RESUMEN

The P2Y14 receptor was initially identified as a G protein-coupled receptor activated by UDP-glucose and other nucleotide sugars. We have developed several cell lines that stably express the human P2Y14 receptor, allowing facile examination of its coupling to native Gi family G proteins and their associated downstream signaling pathways (J Pharmacol Exp Ther 330:162-168, 2009). In the current study, we examined P2Y14 receptor-dependent inhibition of cyclic AMP accumulation in human embryonic kidney (HEK) 293, C6 glioma, and Chinese hamster ovary (CHO) cells stably expressing this receptor. Not only was the human P2Y14 receptor activated by UDP-glucose, but it also was activated by UDP. The apparent efficacies of UDP and UDP-glucose were similar, and the EC50 values (74, 33, and 29 nM) for UDP-dependent activation of the P2Y14 receptor in HEK293, CHO, and C6 glioma cells, respectively, were similar to the EC50 values (323, 132, and 72 nM) observed for UDP-glucose. UDP and UDP-glucose also stimulated extracellular signal-regulated kinase (ERK) 1/2 phosphorylation in P2Y14 receptor-expressing HEK293 cells but not in wild-type HEK293 cells. A series of analogs of UDP were potent P2Y14 receptor agonists, but the naturally occurring nucleoside diphosphates, CDP, GDP, and ADP exhibited agonist potencies over 100-fold less than that observed with UDP. Two UDP analogs were identified that selectively activate the P2Y14 receptor over the UDP-activated P2Y6 receptor, and these molecules stimulated phosphorylation of ERK1/2 in differentiated human HL-60 promyeloleukemia cells, which natively express the P2Y14 receptor but had no effect in wild-type HL-60 cells, which do not express the receptor. We conclude that UDP is an important cognate agonist of the human P2Y14 receptor.


Asunto(s)
Inhibidores de Adenilato Ciclasa , Proteínas de Unión al GTP/fisiología , Agonistas del Receptor Purinérgico P2 , Uridina Difosfato/farmacología , 1-Metil-3-Isobutilxantina/farmacología , Animales , Células CHO , Línea Celular , Colforsina/farmacología , Cricetinae , Cricetulus , Activación Enzimática/efectos de los fármacos , Quinasas MAP Reguladas por Señal Extracelular/biosíntesis , Células HL-60 , Humanos , Receptores Purinérgicos P2 , Transducción de Señal/efectos de los fármacos , Uridina Difosfato Glucosa/farmacología
16.
J Pharmacol Exp Ther ; 330(1): 162-8, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19339661

RESUMEN

Eight G protein-coupled receptors comprise the P2Y receptor family of cell signaling proteins. The goal of the current study was to define native cell signaling pathways regulated by the uridine nucleotide sugar-activated P2Y(14) receptor (P2Y(14)-R). The P2Y(14)-R was stably expressed in human embryonic kidney (HEK) 293 and C6 rat glioma cells by retroviral infection. Nucleotide sugar-dependent P2Y(14)-R activation was examined by measuring inhibition of forskolin-stimulated cAMP accumulation. The effect of P2Y(14)-R activation on mitogen-activated protein kinase signaling also was studied in P2Y(14)-HEK293 cells and in differentiated HL-60 human myeloid leukemia cells. UDP-Glc, UDP-galactose, UDP-glucuronic acid, and UDP-N-acetylglucosamine promoted inhibition of forskolin-stimulated cAMP accumulation in P2Y(14)-HEK293 and P2Y(14)-C6 cells, and this signaling effect was abolished by pretreatment of cells with pertussis toxin. Inhibition of cAMP formation by nucleotide sugars also was observed in direct assays of adenylyl cyclase activity in membranes prepared from P2Y(14)-C6 cells. UDP-Glc promoted concentration-dependent and pertussis toxin-sensitive extracellular signal-regulated kinase (ERK) 1/2 phosphorylation in P2Y(14)-HEK293 cells. P2Y(14)-R mRNA was not observed in wild-type HL-60 cells but was readily detected in dimethyl sulfoxide-differentiated cells. Consistent with this observation, no effect of UDP-Glc was observed in wild-type HL-60 cells, but UDP-Glc-promoted pertussis toxin-sensitive activation of ERK1/2 occurred after differentiation. These results illustrate that the human P2Y(14)-R signals through G(i) to inhibit adenylyl cyclase, and P2Y(14)-R activation also leads to ERK1/2 activation. This work also identifies two stable P2Y(14)-R-expressing cell lines and differentiated HL-60 cells as model systems for the study of P2Y(14)-R-dependent signal transduction.


Asunto(s)
Subunidades alfa de la Proteína de Unión al GTP Gi-Go/fisiología , Receptores Purinérgicos P2/fisiología , Transducción de Señal/fisiología , Animales , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , Línea Celular Tumoral , Colforsina/farmacología , AMP Cíclico/antagonistas & inhibidores , AMP Cíclico/biosíntesis , Células HL-60 , Humanos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/genética , Ratas , Receptores Purinérgicos P2/biosíntesis , Receptores Purinérgicos P2/genética , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Células Tumorales Cultivadas , Azúcares de Uridina Difosfato/farmacología
17.
Bioconjug Chem ; 20(8): 1650-9, 2009 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-19572637

RESUMEN

The P2Y(14) receptor is a G protein-coupled receptor activated by uridine-5'-diphosphoglucose and other nucleotide sugars that modulates immune function. Covalent conjugation of P2Y(14) receptor agonists to PAMAM (polyamidoamine) dendrimers enhanced pharmacological activity. Uridine-5'-diphosphoglucuronic acid (UDPGA) and its ethylenediamine adduct were suitable functionalized congeners for coupling to several generations (G2.5-6) of dendrimers (both terminal carboxy and amino). Prosthetic groups, including biotin for avidin complexation, a chelating group for metal complexation (and eventual magnetic resonance imaging), and a fluorescent moiety, also were attached with the eventual goals of molecular detection and characterization of the P2Y(14) receptor. The activities of conjugates were assayed in HEK293 cells stably expressing the human P2Y(14) receptor. A G3 PAMAM conjugate containing 20 bound nucleotide moieties (UDPGA) was 100-fold more potent (EC(50) 2.4 nM) than the native agonist uridine-5'-diphosphoglucose. A molecular model of this conjugate docked in the human P2Y(14) receptor showed that the nucleotide-substituted branches could extend far beyond the dimensions of the receptor and be available for multivalent docking to receptor aggregates. Larger dendrimer carriers and greater loading favored higher potency. A similar conjugate of G6 with 147 out of 256 amino groups substituted with UDPGA displayed an EC(50) value of 0.8 nM. Thus, biological activity was either retained or dramatically enhanced in the multivalent dendrimer conjugates in comparison with monomeric P2Y(14) receptor agonists, depending on size, degree of substitution, terminal functionality, and attached prosthetic groups.


Asunto(s)
Dendrímeros/farmacología , Poliaminas/farmacología , Agonistas del Receptor Purinérgico P2/farmacología , Receptores Purinérgicos P2/metabolismo , Uridina Difosfato Ácido Glucurónico/farmacología , Células Cultivadas , Dendrímeros/química , Humanos , Conformación Molecular , Poliaminas/química , Agonistas del Receptor Purinérgico P2/química , Receptores Purinérgicos P2/química , Relación Estructura-Actividad , Uridina Difosfato Ácido Glucurónico/química
18.
Circ Res ; 101(8): 768-76, 2007 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-17717302

RESUMEN

cAMP regulates integrin-dependent adhesions of vascular endothelial cells (VECs) to extracellular matrix proteins, their vascular endothelial cadherin-dependent intercellular adhesions, and their proliferation and migration in response to growth and chemotactic factors. Previously, we reported that cAMP-elevating agents differentially inhibited migration of human VECs isolated from large vascular structures (macro-VECs, human aortic endothelial cells [HAECs]) or small vascular structures (micro-VECs, human microvascular endothelial cells [HMVECs]) and that cAMP hydrolysis by phosphodiesterase (PDE)3 and PDE4 enzymes was important in coordinating this difference. Here we report that 2 cAMP-effector enzymes, namely protein kinase (PK)A and exchange protein activated by cAMP (EPAC), each regulate extracellular matrix protein-based adhesions of both macro- and micro-VECs. Of interest and potential therapeutic importance, we report that although specific pharmacological activation of EPAC markedly stimulated adhesion of micro-VECs to extracellular matrix proteins when PKA was inhibited, this treatment only modestly promoted adhesion of macro-VECs. Consistent with an important role for cAMP PDEs in this difference, PDE3 or PDE4 inhibitors promoted EPAC-dependent adhesions in micro-VECs when PKA was inhibited but not in macro-VECs. At a molecular level, we identify multiple, nonoverlapping, PKA- or EPAC-based signaling protein complexes in both macro- and micro-VECs and demonstrate that each of these complexes contains either PDE3B or PDE4D but not both of these PDEs. Taken together, our data support the concept that adhesion of macro- and micro-VECs is differentially regulated by cAMP and that these differences are coordinated through selective actions of cAMP at multiple nonoverlapping signaling complexes that contain PKA or EPAC and distinct PDE variants.


Asunto(s)
Antiportadores/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , AMP Cíclico/fisiología , Células Endoteliales/metabolismo , Células Endoteliales/patología , Antiportadores/fisiología , Adhesión Celular/fisiología , Células Cultivadas , Proteínas Quinasas Dependientes de AMP Cíclico/fisiología , Células Endoteliales/enzimología , Endotelio Vascular/citología , Endotelio Vascular/enzimología , Endotelio Vascular/patología , Humanos
19.
Circ Res ; 100(9): 1328-36, 2007 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-17446433

RESUMEN

Invasion of the subendothelial space by vascular smooth muscle cells (VSMCs) contributes to the development and progression of diverse cardiovascular diseases. In this report we show that the expression of activated versions of Src, Cdc42 and Rac1, or a kinase-dead but open form of the p21-activated kinase (PAK1), induces primary rat aorta VSMCs to form extracellular matrix-degrading actin-rich protrusions that are morphologically similar to the invadopodia formed by highly invasive tumor cells. The matrix-degrading structures are enriched in known markers for invadopodia, including cortactin and tyrosine-phosphorylated cortactin and contain the matrix metalloproteinases MMP-9 and MT1-MMP and the urokinase plasminogen activator receptor (uPAR). In contrast to other cell types, invadopodia formation in VSMCs is only weakly supported by the phorbol ester PBDu. Invadopodia formation by Src was dependent on Cdc42, Rac, and ERK, but not on p38 MAPK. Invadopodia formation induced by kinase-dead PAK1 required Src and ERK activity and a direct interaction with the exchange factor PIX. VSMCs embedded in a three-dimensional collagen matrix formed actin- and cortactin-rich extensions that penetrated through holes in the matrix, suggesting that invadopodia-like structures are formed in a three-dimensional environment.


Asunto(s)
Aorta/citología , Extensiones de la Superficie Celular/metabolismo , Matriz Extracelular/metabolismo , Músculo Liso Vascular/citología , Miocitos del Músculo Liso/fisiología , Animales , Movimiento Celular , Células Cultivadas , Colágeno/metabolismo , Microscopía Fluorescente , Músculo Liso Vascular/metabolismo , Forbol 12,13-Dibutirato/farmacología , Proteínas Serina-Treonina Quinasas/fisiología , Ratas , Proteína de Unión al GTP cdc42/fisiología , Quinasas p21 Activadas , Proteínas de Unión al GTP rac/fisiología , Familia-src Quinasas/fisiología
20.
Bioorg Med Chem Lett ; 19(11): 3002-5, 2009 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-19419868

RESUMEN

Ribose-based nucleoside 5'-diphosphates and triphosphates and related nucleotides were compared in their potency at the P2Y receptors with the corresponding nucleoside 5'-phosphonate derivatives. Phosphonate derivatives of UTP and ATP activated the P2Y(2) receptor but were inactive or weakly active at P2Y(4) receptor. Uridine 5'-(diphospho)phosphonate was approximately as potent at the P2Y(2) receptor as at the UDP-activated P2Y(6) receptor. These results suggest that removal of the 5'-oxygen atom from nucleotide agonist derivatives reduces but does not prevent interaction with the P2Y(2) receptor. Uridine 5'-(phospho)phosphonate as well as the 5'-methylenephosphonate equivalent of UMP were inactive at the P2Y(4) receptor and exhibited maximal effects at the P2Y(2) receptor that were 50% of that of UTP suggesting novel action of these analogues.


Asunto(s)
Nucleótidos/síntesis química , Agonistas del Receptor Purinérgico P2 , Adenosina Difosfato/análogos & derivados , Adenosina Difosfato/síntesis química , Adenosina Difosfato/química , Adenosina Trifosfato/análogos & derivados , Adenosina Trifosfato/síntesis química , Adenosina Trifosfato/química , Línea Celular Tumoral , Humanos , Nucleótidos/química , Receptores Purinérgicos P2/metabolismo , Proteínas Recombinantes/agonistas , Proteínas Recombinantes/metabolismo , Uridina Difosfato/análogos & derivados , Uridina Difosfato/síntesis química , Uridina Difosfato/química , Uridina Trifosfato/análogos & derivados , Uridina Trifosfato/síntesis química , Uridina Trifosfato/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA