Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Cell ; 185(21): 3913-3930.e19, 2022 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-36198316

RESUMEN

Although women experience significantly higher tau burden and increased risk for Alzheimer's disease (AD) than men, the underlying mechanism for this vulnerability has not been explained. Here, we demonstrate through in vitro and in vivo models, as well as human AD brain tissue, that X-linked ubiquitin specific peptidase 11 (USP11) augments pathological tau aggregation via tau deubiquitination initiated at lysine-281. Removal of ubiquitin provides access for enzymatic tau acetylation at lysines 281 and 274. USP11 escapes complete X-inactivation, and female mice and people both exhibit higher USP11 levels than males. Genetic elimination of usp11 in a tauopathy mouse model preferentially protects females from acetylated tau accumulation, tau pathology, and cognitive impairment. USP11 levels also strongly associate positively with tau pathology in females but not males. Thus, inhibiting USP11-mediated tau deubiquitination may provide an effective therapeutic opportunity to protect women from increased vulnerability to AD and other tauopathies.


Asunto(s)
Enfermedad de Alzheimer , Tauopatías , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Animales , Encéfalo/metabolismo , Encéfalo/patología , Modelos Animales de Enfermedad , Femenino , Humanos , Masculino , Ratones , Ratones Transgénicos , Caracteres Sexuales , Tauopatías/genética , Tauopatías/patología , Tioléster Hidrolasas/genética , Proteasas Ubiquitina-Específicas , Proteínas tau/genética
2.
EMBO J ; 43(11): 2094-2126, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38600241

RESUMEN

A versatile division of apicomplexan parasites and a dearth of conserved regulators have hindered the progress of apicomplexan cell cycle studies. While most apicomplexans divide in a multinuclear fashion, Toxoplasma gondii tachyzoites divide in the traditional binary mode. We previously identified five Toxoplasma CDK-related kinases (Crk). Here, we investigated TgCrk4 and its cyclin partner TgCyc4. We demonstrated that TgCrk4 regulates conventional G2 phase processes, such as repression of chromosome rereplication and centrosome reduplication, and acts upstream of the spindle assembly checkpoint. The spatial TgCyc4 dynamics supported the TgCrk4-TgCyc4 complex role in the coordination of chromosome and centrosome cycles. We also identified a dominant TgCrk4-TgCyc4 complex interactor, TgiRD1 protein, related to DNA replication licensing factor CDT1 but played no role in licensing DNA replication in the G1 phase. Our results showed that TgiRD1 also plays a role in controlling chromosome and centrosome reduplication. Global phosphoproteome analyses identified TgCrk4 substrates, including TgORC4, TgCdc20, TgGCP2, and TgPP2ACA. Importantly, the phylogenetic and structural studies suggest the Crk4-Cyc4 complex is limited to a minor group of the binary dividing apicomplexans.


Asunto(s)
Proteínas Protozoarias , Toxoplasma , Toxoplasma/metabolismo , Toxoplasma/genética , Proteínas Protozoarias/metabolismo , Proteínas Protozoarias/genética , Fase G2/genética , Centrosoma/metabolismo , División Celular , Ciclinas/metabolismo , Ciclinas/genética
3.
Hum Mol Genet ; 31(23): 3987-4005, 2022 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-35786718

RESUMEN

Coiled-coil-helix-coiled-coil-helix domain containing 2 (CHCHD2) is a mitochondrial protein that plays important roles in cristae structure, oxidative phosphorylation and apoptosis. Multiple mutations in CHCHD2 have been associated with Lewy body disorders (LBDs), such as Parkinson's disease (PD) and dementia with Lewy bodies, with the CHCHD2-T61I mutation being the most widely studied. However, at present, only CHCHD2 knockout or CHCHD2/CHCHD10 double knockout mouse models have been investigated. They do not recapitulate the pathology seen in patients with CHCHD2 mutations. We generated the first transgenic mouse model expressing the human PD-linked CHCHD2-T61I mutation driven by the mPrP promoter. We show that CHCHD2-T61I Tg mice exhibit perinuclear mitochondrial aggregates, neuroinflammation, and have impaired long-term synaptic plasticity associated with synaptic dysfunction. Dopaminergic neurodegeneration, a hallmark of PD, is also observed along with α-synuclein pathology. Significant motor dysfunction is seen with no changes in learning and memory at 1 year of age. A minor proportion of the CHCHD2-T61I Tg mice (~10%) show a severe motor phenotype consistent with human Pisa Syndrome, an atypical PD phenotype. Unbiased proteomics analysis reveals surprising increases in many insoluble proteins predominantly originating from mitochondria and perturbing multiple canonical biological pathways as assessed by ingenuity pathway analysis, including neurodegenerative disease-associated proteins such as tau, cofilin, SOD1 and DJ-1. Overall, CHCHD2-T61I Tg mice exhibit pathological and motor changes associated with LBDs, indicating that this model successfully captures phenotypes seen in human LBD patients with CHCHD2 mutations and demonstrates changes in neurodegenerative disease-associated proteins, which delineates relevant pathological pathways for further investigation.


Asunto(s)
Enfermedades Neurodegenerativas , Enfermedad de Parkinson , Humanos , Animales , Ratones , Enfermedad de Parkinson/metabolismo , Proteínas de Unión al ADN/genética , Factores de Transcripción/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Proteínas Mitocondriales/genética , Mutación , Modelos Animales de Enfermedad
4.
Appl Environ Microbiol ; : e0107524, 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39177330

RESUMEN

Autotrophic bacteria are able to fix CO2 in a great diversity of habitats, even though this dissolved gas is relatively scarce at neutral pH and above. As many of these bacteria rely on CO2 fixation by ribulose 1,5-bisphospate carboxylase/oxygenase (RubisCO) for biomass generation, they must compensate for the catalytical constraints of this enzyme with CO2-concentrating mechanisms (CCMs). CCMs consist of CO2 and HCO3- transporters and carboxysomes. Carboxysomes encapsulate RubisCO and carbonic anhydrase (CA) within a protein shell and are essential for the operation of a CCM in autotrophic Bacteria that use the Calvin-Benson-Basham cycle. Members of the genus Thiomicrospira lack genes homologous to those encoding previously described CA, and prior to this work, the mechanism of function for their carboxysomes was unclear. In this paper, we provide evidence that a member of the recently discovered iota family of carbonic anhydrase enzymes (ιCA) plays a role in CO2 fixation by carboxysomes from members of Thiomicrospira and potentially other Bacteria. Carboxysome enrichments from Thiomicrospira pelophila and Thiomicrospira aerophila were found to have CA activity and contain ιCA, which is encoded in their carboxysome loci. When the gene encoding ιCA was interrupted in T. pelophila, cells could no longer grow under low-CO2 conditions, and CA activity was no longer detectable in their carboxysomes. When T. pelophila ιCA was expressed in a strain of Escherichia coli lacking native CA activity, this strain recovered an ability to grow under low CO2 conditions, and CA activity was present in crude cell extracts prepared from this strain. IMPORTANCE: Here, we provide evidence that iota carbonic anhydrase (ιCA) plays a role in CO2 fixation by some organisms with CO2-concentrating mechanisms; this is the first time that ιCA has been detected in carboxysomes. While ιCA genes have been previously described in other members of bacteria, this is the first description of a physiological role for this type of carbonic anhydrase in this domain. Given its distribution in alkaliphilic autotrophic bacteria, ιCA may provide an advantage to organisms growing at high pH values and could be helpful for engineering autotrophic organisms to synthesize compounds of industrial interest under alkaline conditions.

5.
Cell Commun Signal ; 22(1): 221, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38594674

RESUMEN

VEGFR2 (Vascular endothelial growth factor receptor 2) is a central regulator of placental angiogenesis. The study of the VEGFR2 proteome of chorionic villi at term revealed its partners MDMX (Double minute 4 protein) and PICALM (Phosphatidylinositol-binding clathrin assembly protein). Subsequently, the oxytocin receptor (OT-R) and vasopressin V1aR receptor were detected in MDMX and PICALM immunoprecipitations. Immunogold electron microscopy showed VEGFR2 on endothelial cell (EC) nuclei, mitochondria, and Hofbauer cells (HC), tissue-resident macrophages of the placenta. MDMX, PICALM, and V1aR were located on EC plasma membranes, nuclei, and HC nuclei. Unexpectedly, PICALM and OT-R were detected on EC projections into the fetal lumen and OT-R on 20-150 nm clusters therein, prompting the hypothesis that placental exosomes transport OT-R to the fetus and across the blood-brain barrier. Insights on gestational complications were gained by univariable and multivariable regression analyses associating preeclampsia with lower MDMX protein levels in membrane extracts of chorionic villi, and lower MDMX, PICALM, OT-R, and V1aR with spontaneous vaginal deliveries compared to cesarean deliveries before the onset of labor. We found select associations between higher MDMX, PICALM, OT-R protein levels and either gravidity, diabetes, BMI, maternal age, or neonatal weight, and correlations only between PICALM-OT-R (p < 2.7 × 10-8), PICALM-V1aR (p < 0.006), and OT-R-V1aR (p < 0.001). These results offer for exploration new partnerships in metabolic networks, tissue-resident immunity, and labor, notably for HC that predominantly express MDMX.


Asunto(s)
Diabetes Mellitus , Preeclampsia , Femenino , Humanos , Recién Nacido , Embarazo , Número de Embarazos , Oxitocina/metabolismo , Placenta/metabolismo , Preeclampsia/metabolismo , Proteómica , Receptores de Oxitocina/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo
6.
RNA Biol ; 21(1): 1-11, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38126797

RESUMEN

The Cell Division Cycle and Apoptosis Regulator (CCAR) protein family members have recently emerged as regulators of alternative splicing and transcription, as well as having other key physiological functions. For example, mammalian CCAR2/DBC1 forms a complex with the zinc factor protein ZNF326 to integrate alternative splicing with RNA polymerase II transcriptional elongation in AT-rich regions of the DNA. Additionally, Caenorhabditis elegans CCAR-1, a homolog to mammalian CCAR2, facilitates the alternative splicing of the perlecan unc-52 gene. However, much about the CCAR family's role in alternative splicing is unknown. Here, we have examined the role of CCAR-1 in genome-wide alternative splicing in Caenorhabditis elegans and have identified new alternative splicing targets of CCAR-1 using RNA sequencing. Also, we found that CCAR-1 interacts with the spliceosome factors UAF-1 and UAF-2 using mass spectrometry, and that knockdown of ccar-1 affects alternative splicing patterns, motility, and proteostasis of UAF-1 mutant worms. Collectively, we demonstrate the role of CCAR-1 in regulating global alternative splicing in C. elegans and in conjunction with UAF-1.


Asunto(s)
Empalme Alternativo , Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Proteínas de la Membrana , Ribonucleoproteínas , Animales , Secuencia de Bases , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Empalme del ARN , Factor de Empalme U2AF/genética , Factor de Empalme U2AF/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo
7.
Int J Mol Sci ; 23(2)2022 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-35055033

RESUMEN

The microtubule-associated protein tau pathologically accumulates and aggregates in Alzheimer's disease (AD) and other tauopathies, leading to cognitive dysfunction and neuronal loss. Molecular chaperones, like small heat-shock proteins (sHsps), can help deter the accumulation of misfolded proteins, such as tau. Here, we tested the hypothesis that the overexpression of wild-type Hsp22 (wtHsp22) and its phosphomimetic (S24,57D) Hsp22 mutant (mtHsp22) could slow tau accumulation and preserve memory in a murine model of tauopathy, rTg4510. Our results show that Hsp22 protected against deficits in synaptic plasticity and cognition in the tauopathic brain. However, we did not detect a significant change in tau phosphorylation or levels in these mice. This led us to hypothesize that the functional benefit was realized through the restoration of dysfunctional pathways in hippocampi of tau transgenic mice since no significant benefit was measured in non-transgenic mice expressing wtHsp22 or mtHsp22. To identify these pathways, we performed mass spectrometry of tissue lysates from the injection site. Overall, our data reveal that Hsp22 overexpression in neurons promotes synaptic plasticity by regulating canonical pathways and upstream regulators that have been characterized as potential AD markers and synaptogenesis regulators, like EIF4E and NFKBIA.


Asunto(s)
Encéfalo/metabolismo , Cognición , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Aprendizaje , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Tauopatías/etiología , Tauopatías/metabolismo , Animales , Biomarcadores , Encéfalo/patología , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Metabolismo Energético , Expresión Génica , Ratones , Ratones Transgénicos , Mutación , Neuronas/metabolismo , Fosforilación , Transducción de Señal , Tauopatías/patología , Transducción Genética , Proteínas tau/genética , Proteínas tau/metabolismo
8.
J Bacteriol ; 203(23): e0037721, 2021 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-34543103

RESUMEN

In nature, concentrations of dissolved inorganic carbon (DIC; CO2 + HCO3- + CO32-) can be low, and autotrophic organisms adapt with a variety of mechanisms to elevate intracellular DIC concentrations to enhance CO2 fixation. Such mechanisms have been well studied in Cyanobacteria, but much remains to be learned about their activity in other phyla. Novel multisubunit membrane-spanning complexes capable of elevating intracellular DIC were recently described in three species of bacteria. Homologs of these complexes are distributed among 17 phyla in Bacteria and Archaea and are predicted to consist of one, two, or three subunits. To determine whether DIC accumulation is a shared feature of these diverse complexes, seven of them, representative of organisms from four phyla, from a variety of habitats, and with three different subunit configurations, were chosen for study. A high-CO2-requiring, carbonic anhydrase-deficient (ΔyadF ΔcynT) strain of Escherichia coli Lemo21(DE3), which could be rescued via elevated intracellular DIC concentrations, was created for heterologous expression and characterization of the complexes. Expression of all seven complexes rescued the ability of E. coli Lemo21(DE3) ΔyadF ΔcynT to grow under low-CO2 conditions, and six of the seven generated measurably elevated intracellular DIC concentrations when their expression was induced. For complexes consisting of two or three subunits, all subunits were necessary for DIC accumulation. Isotopic disequilibrium experiments clarified that CO2 was the substrate for these complexes. In addition, the presence of an ionophore prevented the accumulation of intracellular DIC, suggesting that these complexes may couple proton potential to DIC accumulation. IMPORTANCE To facilitate the synthesis of biomass from CO2, autotrophic organisms use a variety of mechanisms to increase intracellular DIC concentrations. A novel type of multisubunit complex has recently been described, which has been shown to generate measurably elevated intracellular DIC concentrations in three species of bacteria, raising the question of whether these complexes share this capability across the 17 phyla of Bacteria and Archaea where they are found. This study shows that DIC accumulation is a trait shared by complexes with various subunit structures, from organisms with diverse physiologies and taxonomies, suggesting that this trait is universal among them. Successful expression in E. coli suggests the possibility of their expression in engineered organisms synthesizing compounds of industrial importance from CO2.


Asunto(s)
Procesos Autotróficos/fisiología , Bacterias/clasificación , Bacterias/metabolismo , Carbono/metabolismo , Bacterias/genética , Proteínas Bacterianas , Dióxido de Carbono/metabolismo , Cromatografía Liquida , Regulación Bacteriana de la Expresión Génica , Genoma Bacteriano , Concentración de Iones de Hidrógeno , Espectrometría de Masas en Tándem
9.
Int J Mol Sci ; 22(12)2021 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-34198710

RESUMEN

Microglial activity in the aging neuroimmune system is a central player in aging-related dysfunction. Aging alters microglial function via shifts in protein signaling cascades. These shifts can propagate neurodegenerative pathology. Therapeutics require a multifaceted approach to understand and address the stochastic nature of this process. Polyphenols offer one such means of rectifying age-related decline. Our group used mass spectrometry (MS) analysis to explicate the complex nature of these aging microglial pathways. In our first experiment, we compared primary microglia isolated from young and aged rats and identified 197 significantly differentially expressed proteins between these groups. Then, we performed bioinformatic analysis to explore differences in canonical signaling cascades related to microglial homeostasis and function with age. In a second experiment, we investigated changes to these pathways in aged animals after 30-day dietary supplementation with NT-020, which is a blend of polyphenols. We identified 144 differentially expressed proteins between the NT-020 group and the control diet group via MS analysis. Bioinformatic analysis predicted an NT-020 driven reversal in the upregulation of age-related canonical pathways that control inflammation, cellular metabolism, and proteostasis. Our results highlight salient aspects of microglial aging at the level of protein interactions and demonstrate a potential role of polyphenols as therapeutics for age-associated dysfunction.


Asunto(s)
Envejecimiento/fisiología , Suplementos Dietéticos , Microglía/metabolismo , Polifenoles/farmacología , Transducción de Señal , Animales , Dieta , Ontología de Genes , Masculino , Microglía/efectos de los fármacos , Proteoma/metabolismo , Ratas Endogámicas F344 , Transducción de Señal/efectos de los fármacos
10.
EMBO J ; 35(14): 1537-49, 2016 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-27261198

RESUMEN

It is now known that proteins associated with neurodegenerative disease can spread throughout the brain in a prionlike manner. However, the mechanisms regulating the trans-synaptic spread propagation, including the neuronal release of these proteins, remain unknown. The interaction of neurodegenerative disease-associated proteins with the molecular chaperone Hsc70 is well known, and we hypothesized that much like disaggregation, refolding, degradation, and even normal function, Hsc70 may dictate the extracellular fate of these proteins. Here, we show that several proteins, including TDP-43, α-synuclein, and the microtubule-associated protein tau, can be driven out of the cell by an Hsc70 co-chaperone, DnaJC5. In fact, DnaJC5 overexpression induced tau release in cells, neurons, and brain tissue, but only when activity of the chaperone Hsc70 was intact and when tau was able to associate with this chaperone. Moreover, release of tau from neurons was reduced in mice lacking the DnaJC5 gene and when the complement of DnaJs in the cell was altered. These results demonstrate that the dynamics of DnaJ/Hsc70 complexes are critically involved in the release of neurodegenerative disease proteins.


Asunto(s)
Proteínas del Choque Térmico HSC70/metabolismo , Proteínas del Choque Térmico HSP40/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas tau/metabolismo , Línea Celular , Proteínas de Unión al ADN/metabolismo , Humanos , alfa-Sinucleína/metabolismo
11.
Appl Environ Microbiol ; 85(3)2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30446552

RESUMEN

Members of the genera Hydrogenovibrio, Thiomicrospira, and Thiomicrorhabdus fix carbon at hydrothermal vents, coastal sediments, hypersaline lakes, and other sulfidic habitats. The genome sequences of these ubiquitous and prolific chemolithoautotrophs suggest a surprising diversity of mechanisms for the uptake and fixation of dissolved inorganic carbon (DIC); these mechanisms are verified here. Carboxysomes are apparent in the transmission electron micrographs of most of these organisms but are lacking in Thiomicrorhabdus sp. strain Milos-T2 and Thiomicrorhabdus arctica, and the inability of Thiomicrorhabdus sp. strain Milos-T2 to grow under low-DIC conditions is consistent with the absence of carboxysome loci in its genome. For the remaining organisms, genes encoding potential DIC transporters from four evolutionarily distinct families (Tcr_0853 and Tcr_0854, Chr, SbtA, and SulP) are located downstream of carboxysome loci. Transporter genes collocated with carboxysome loci, as well as some homologs located elsewhere on the chromosomes, had elevated transcript levels under low-DIC conditions, as assayed by reverse transcription-quantitative PCR (qRT-PCR). DIC uptake was measureable via silicone oil centrifugation when a representative of each of the four types of transporter was expressed in Escherichia coli The expression of these genes in the carbonic anhydrase-deficient E. coli strain EDCM636 enabled it to grow under low-DIC conditions, a result consistent with DIC transport by these proteins. The results from this study expand the range of DIC transporters within the SbtA and SulP transporter families, verify DIC uptake by transporters encoded by Tcr_0853 and Tcr_0854 and their homologs, and introduce DIC as a potential substrate for transporters from the Chr family.IMPORTANCE Autotrophic organisms take up and fix DIC, introducing carbon into the biological portion of the global carbon cycle. The mechanisms for DIC uptake and fixation by autotrophic Bacteria and Archaea are likely to be diverse but have been well characterized only for "Cyanobacteria" Based on genome sequences, members of the genera Hydrogenovibrio, Thiomicrospira, and Thiomicrorhabdus have a variety of mechanisms for DIC uptake and fixation. We verified that most of these organisms are capable of growing under low-DIC conditions, when they upregulate carboxysome loci and transporter genes collocated with these loci on their chromosomes. When these genes, which fall into four evolutionarily independent families of transporters, are expressed in E. coli, DIC transport is detected. This expansion in known DIC transporters across four families, from organisms from a variety of environments, provides insight into the ecophysiology of autotrophs, as well as a toolkit for engineering microorganisms for carbon-neutral biochemistries of industrial importance.


Asunto(s)
Dióxido de Carbono/metabolismo , Piscirickettsiaceae/aislamiento & purificación , Piscirickettsiaceae/metabolismo , Sulfuros/metabolismo , Procesos Autotróficos , Ciclo del Carbono , Dióxido de Carbono/análisis , Ecosistema , Respiraderos Hidrotermales/química , Respiraderos Hidrotermales/microbiología , Filogenia , Piscirickettsiaceae/clasificación , Piscirickettsiaceae/genética
12.
J Bacteriol ; 199(2)2017 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-27799328

RESUMEN

Staphylococcus aureus is a major human pathogen that causes infection in a wide variety of sites within the human body. Its ability to adapt to the human host and to produce a successful infection requires precise orchestration of gene expression. While DNA-dependent RNA polymerase (RNAP) is generally well characterized, the roles of several small accessory subunits within the complex have yet to be fully explored. This is particularly true for the omega (ω or RpoZ) subunit, which has been extensively studied in Gram-negative bacteria but largely neglected in Gram-positive counterparts. In Escherichia coli, it has been shown that ppGpp binding, and thus control of the stringent response, is facilitated by ω. Interestingly, key residues that facilitate ppGpp binding by ω are not conserved in S. aureus, and consequently, survival under starvation conditions is unaffected by rpoZ deletion. Further to this, ω-lacking strains of S. aureus display structural changes in the RNAP complex, which result from increased degradation and misfolding of the ß' subunit, alterations in δ and σ factor abundance, and a general dissociation of RNAP in the absence of ω. Through RNA sequencing analysis we detected a variety of transcriptional changes in the rpoZ-deficient strain, presumably as a response to the negative effects of ω depletion on the transcription machinery. These transcriptional changes translated to an impaired ability of the rpoZ mutant to resist stress and to fully form a biofilm. Collectively, our data underline, for the first time, the importance of ω for RNAP stability, function, and cellular physiology in S. aureus IMPORTANCE: In order for bacteria to adjust to changing environments, such as within the host, the transcriptional process must be tightly controlled. Transcription is carried out by DNA-dependent RNA polymerase (RNAP). In addition to its major subunits (α2ßß') a fifth, smaller subunit, ω, is present in all forms of life. Although this small subunit is well studied in eukaryotes and Gram-negative bacteria, only limited information is available for Gram-positive and pathogenic species. In this study, we investigated the structural and functional importance of ω, revealing key roles in subunit folding/stability, complex assembly, and maintenance of transcriptional integrity. Collectively, our data underline, for the first time, the importance of ω for RNAP function and cellular harmony in S. aureus.


Asunto(s)
Proteínas Bacterianas/metabolismo , ARN Polimerasas Dirigidas por ADN/metabolismo , Regulación Bacteriana de la Expresión Génica/fisiología , Regulación Enzimológica de la Expresión Génica/fisiología , Staphylococcus aureus/enzimología , Proteínas Bacterianas/genética , Secuencia de Bases , ARN Polimerasas Dirigidas por ADN/genética , Guanosina Tetrafosfato , Estabilidad Proteica , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo , Transcripción Genética
13.
J Bacteriol ; 199(7)2017 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-28115547

RESUMEN

Many autotrophic microorganisms are likely to adapt to scarcity in dissolved inorganic carbon (DIC; CO2 + HCO3- + CO32-) with CO2 concentrating mechanisms (CCM) that actively transport DIC across the cell membrane to facilitate carbon fixation. Surprisingly, DIC transport has been well studied among cyanobacteria and microalgae only. The deep-sea vent gammaproteobacterial chemolithoautotroph Thiomicrospira crunogena has a low-DIC inducible CCM, though the mechanism for uptake is unclear, as homologs to cyanobacterial transporters are absent. To identify the components of this CCM, proteomes of T. crunogena cultivated under low- and high-DIC conditions were compared. Fourteen proteins, including those comprising carboxysomes, were at least 4-fold more abundant under low-DIC conditions. One of these proteins was encoded by Tcr_0854; strains carrying mutated copies of this gene, as well as the adjacent Tcr_0853, required elevated DIC for growth. Strains carrying mutated copies of Tcr_0853 and Tcr_0854 overexpressed carboxysomes and had diminished ability to accumulate intracellular DIC. Based on reverse transcription (RT)-PCR, Tcr_0853 and Tcr_0854 were cotranscribed and upregulated under low-DIC conditions. The Tcr_0853-encoded protein was predicted to have 13 transmembrane helices. Given the mutant phenotypes described above, Tcr_0853 and Tcr_0854 may encode a two-subunit DIC transporter that belongs to a previously undescribed transporter family, though it is widespread among autotrophs from multiple phyla.IMPORTANCE DIC uptake and fixation by autotrophs are the primary input of inorganic carbon into the biosphere. The mechanism for dissolved inorganic carbon uptake has been characterized only for cyanobacteria despite the importance of DIC uptake by autotrophic microorganisms from many phyla among the Bacteria and Archaea In this work, proteins necessary for dissolved inorganic carbon utilization in the deep-sea vent chemolithoautotroph T. crunogena were identified, and two of these may be able to form a novel transporter. Homologs of these proteins are present in 14 phyla in Bacteria and also in one phylum of Archaea, the Euryarchaeota Many organisms carrying these homologs are autotrophs, suggesting a role in facilitating dissolved inorganic carbon uptake and fixation well beyond the genus Thiomicrospira.


Asunto(s)
Dióxido de Carbono/metabolismo , Regulación Bacteriana de la Expresión Génica/fisiología , Respiraderos Hidrotermales/microbiología , Piscirickettsiaceae/metabolismo , Carbono/metabolismo , Mutación , Filogenia , Piscirickettsiaceae/genética , Proteoma
14.
Mol Cell Proteomics ; 14(12): 3173-84, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26424600

RESUMEN

Microglia, the resident immune cells of the brain, have been shown to display a complex spectrum of roles that span from neurotrophic to neurotoxic depending on their activation status. Microglia can be classified into four stages of activation, M1, which most closely matches the classical (pro-inflammatory) activation stage, and the alternative activation stages M2a, M2b, and M2c. The alternative activation stages have not yet been comprehensively analyzed through unbiased, global-scale protein expression profiling. In this study, BV2 mouse immortalized microglial cells were stimulated with agonists specific for each of the four stages and total protein expression for 4644 protein groups was quantified using SILAC-based proteomic analysis. After validating induction of the various stages through a targeted cytokine assay and Western blotting of activation states, the data revealed novel insights into the similarities and differences between the various states. The data identify several protein groups whose expression in the anti-inflammatory, pro-healing activation states are altered presumably to curtail inflammatory activation through differential protein expression, in the M2a state including CD74, LYN, SQST1, TLR2, and CD14. The differential expression of these proteins promotes healing, limits phagocytosis, and limits activation of reactive nitrogen species through toll-like receptor cascades. The M2c state appears to center around the down-regulation of a key member in the formation of actin-rich phagosomes, SLP-76. In addition, the proteomic data identified a novel activation marker, DAB2, which is involved in clathrin-mediated endocytosis and is significantly different between M2a and either M1 or M2b states. Western blot analysis of mouse primary microglia stimulated with the various agonists of the classical and alternative activation states revealed a similar trend of DAB2 expression compared with BV2 cells.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Aminoácidos/química , Microglía/citología , Proteómica/métodos , Proteínas Adaptadoras Transductoras de Señales , Animales , Proteínas Reguladoras de la Apoptosis , Técnicas de Cultivo de Célula , Línea Celular , Regulación de la Expresión Génica , Marcaje Isotópico , Lipopolisacáridos/farmacología , Ratones , Microglía/efectos de los fármacos , Microglía/metabolismo
15.
J Proteome Res ; 12(5): 2067-77, 2013 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-23495833

RESUMEN

Long-term exposure to alcohol can have profound effects on the central nervous system including pathophysiological consequences associated with neuroinflammation. Along with astroglia, microglia play an important role in the neuroinflammatory response. Using a SILAC-labeled rat microglial cell line, an expression profile of 2994 proteins was identified in ethanol-treated microglial cells, where 160 and 69 protein groups were determined to be significantly upregulated and downregulated, respectively. In addition, SILAC-based proteomic analysis of lipopolysaccharide-treated microglial cells was performed in order to generate a reference data set representing a "classical" (M1) macrophage activation response in order to compare to the differential protein expression profile of ethanol-treated microglia. On the basis of this comparison as well as other validation experiments performed in this study, ethanol appears to induce partial activation of microglia that is devoid of conventional markers that indicate an M1 phenotype. This study is the first comprehensive proteomic analysis to assess the impact of acute ethanol exposure on microglial function and will provide a significant foundation that includes novel protein markers for future work aimed to characterize the molecular mechanisms associated with ethanol-induced microglial activation and its role in neurodegeneration.


Asunto(s)
Depresores del Sistema Nervioso Central/toxicidad , Etanol/toxicidad , Microglía/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteoma/metabolismo , Alcoholismo/metabolismo , Alcoholismo/patología , Animales , Células Cultivadas , Citocinas/genética , Citocinas/metabolismo , Complejo I de Transporte de Electrón/metabolismo , Expresión Génica/efectos de los fármacos , Expresión Génica/inmunología , Humanos , Lipopolisacáridos/farmacología , Microglía/efectos de los fármacos , Microglía/inmunología , Óxido Nítrico Sintasa de Tipo II/metabolismo , Proteómica , Ratas , Transducción de Señal
16.
mBio ; : e0251323, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37966241

RESUMEN

IMPORTANCE: The Golgi is an essential eukaryotic organelle and a major place for protein sorting and glycosylation. Among apicomplexan parasites, Toxoplasma gondii retains the most developed Golgi structure and produces many glycosylated factors necessary for parasite survival. Despite its importance, Golgi function received little attention in the past. In the current study, we identified and characterized the conserved oligomeric Golgi complex and its novel partners critical for protein transport in T. gondii tachyzoites. Our results suggest that T. gondii broadened the role of the conserved elements and reinvented the missing components of the trafficking machinery to accommodate the specific needs of the opportunistic parasite T. gondii.

17.
Sci Rep ; 13(1): 10980, 2023 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-37414804

RESUMEN

Portable air purifiers help improve indoor air quality by neutralizing allergens, including animal dander proteins. However, there are limited in-vivo models to assess the efficacy of these devices. Here, we developed a novel animal model of experimental asthma using aerosolized cat dander extract (CDE) exposure and compared the efficacy of select air purification technologies. Mice were exposed to CDE aerosols for 6 weeks in separate custom-built whole-body exposure chambers equipped with either a photoelectrochemical oxidative (PECO) Molekule filtration device (PFD) or a HEPA-assisted air filtration device (HFD) along with positive (a device with no filtration capability) and negative controls. Compared to the positive control group, the CDE-induced airway resistance, and plasma IgE and IL-13 levels were significantly reduced in both air purifier groups. However, PFD mice showed a better attenuation of lung tissue mucous hyperplasia and eosinophilia than HFD and positive control mice, indicating a better efficacy in managing CDE-induced allergic responses. Cat dander protein destruction was evaluated by LCMS proteomic analysis, which revealed the degradation of 2731 unique peptides on PECO media in 1 h. Thus, allergen protein destruction on filtration media enhances air purifier efficacy that could provide relief from allergy responses compared to traditional HEPA-based filtration alone.


Asunto(s)
Contaminación del Aire Interior , Asma , Hipersensibilidad , Ratones , Animales , Modelos Animales de Enfermedad , Alérgenos Animales/metabolismo , Proteómica , Hipersensibilidad/metabolismo , Alérgenos
18.
Electrophoresis ; 33(24): 3728-37, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23161580

RESUMEN

Alzheimer's disease (AD) is the most prevalent form of dementia in the elderly. Amyloid plaque formation through aggregation of the amyloid beta peptide derived from amyloid precursor protein (APP) is considered one of the hallmark processes leading to AD pathology; however, the precise role of APP in plaque formation and AD pathogenesis is yet to be determined. Using stable isotope labeling by amino acids in cell culture (SILAC) and MS, protein expression profiles of APP null, rat neuronal-like B103 cells were compared to B103-695 cells that express the APP isoform, APP-695. A total of 2979 unique protein groups were identified among three biological replicates and significant protein expression changes were identified in a total of 102 nonredundant proteins. Some of the top biological functions associated with the differentially expressed proteins identified include cellular assembly, organization and morphology, cell cycle, lipid metabolism, protein folding, and PTMs. We report several novel biological pathways influenced by APP-695 expression in neuronal-like cells and provide additional framework for investigating altered molecular mechanisms associated with APP expression and processing and contribution to AD pathology.


Asunto(s)
Precursor de Proteína beta-Amiloide/metabolismo , Marcaje Isotópico/métodos , Neuronas/metabolismo , Proteoma/análisis , Proteómica/métodos , Precursor de Proteína beta-Amiloide/genética , Animales , Línea Celular Tumoral , Immunoblotting , Espectrometría de Masas , Microscopía Fluorescente , Neuronas/química , Proteínas/análisis , Proteínas/química , Proteínas/metabolismo , Proteoma/química , Proteoma/metabolismo , Ratas , Transducción de Señal
19.
Microbiol Spectr ; 10(3): e0070222, 2022 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-35652638

RESUMEN

Human toxoplasmosis is a life-threatening disease caused by the apicomplexan parasite Toxoplasma gondii. Rapid replication of the tachyzoite is associated with symptomatic disease, while suppressed division of the bradyzoite is responsible for chronic disease. Here, we identified the T. gondii cell cycle mechanism, the G1 restriction checkpoint (R-point), that operates the switch between parasite growth and differentiation. Apicomplexans lack conventional R-point regulators, suggesting adaptation of alternative factors. We showed that Cdk-related G1 kinase TgCrk2 forms alternative complexes with atypical cyclins (TgCycP1, TgCycP2, and TgCyc5) in the rapidly dividing developmentally incompetent RH and slower dividing developmentally competent ME49 tachyzoites and bradyzoites. Examination of cyclins verified the correlation of cyclin expression with growth dependence and development capacity of RH and ME49 strains. We demonstrated that rapidly dividing RH tachyzoites were dependent on TgCycP1 expression, which interfered with bradyzoite differentiation. Using the conditional knockdown model, we established that TgCycP2 regulated G1 duration in the developmentally competent ME49 tachyzoites but not in the developmentally incompetent RH tachyzoites. We tested the functions of TgCycP2 and TgCyc5 in alkaline induced and spontaneous bradyzoite differentiation (rat embryonic brain cells) models. Based on functional and global gene expression analyses, we determined that TgCycP2 also regulated bradyzoite replication, while signal-induced TgCyc5 was critical for efficient tissue cyst maturation. In conclusion, we identified the central machinery of the T. gondii restriction checkpoint comprised of TgCrk2 kinase and three atypical T. gondii cyclins and demonstrated the independent roles of TgCycP1, TgCycP2, and TgCyc5 in parasite growth and development. IMPORTANCE Toxoplasma gondii is a virulent and abundant human pathogen that puts millions of silently infected people at risk of reactivation of the chronic disease. Encysted bradyzoites formed during the chronic stage are resistant to current therapies. Therefore, insights into the mechanism of tissue cyst formation and reactivation are major areas of investigation. The fact that rapidly dividing parasites differentiate poorly strongly suggests that there is a threshold of replication rate that must be crossed to be considered for differentiation. We discovered a cell cycle mechanism that controls the T. gondii growth-rest switch involved in the conversion of dividing tachyzoites into largely quiescent bradyzoites. This switch operates the T. gondii restriction checkpoint using a set of atypical and parasite-specific regulators. Importantly, the novel T. gondii R-point network was not present in the parasite's human and animal hosts, offering a wealth of new and parasite-specific drug targets to explore in the future.


Asunto(s)
Toxoplasma , Toxoplasmosis , Animales , Ciclo Celular , Diferenciación Celular , Ciclinas/metabolismo , Humanos , Ratas , Toxoplasma/genética
20.
Cell Rep ; 35(1): 108930, 2021 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-33826899

RESUMEN

Staphylococcus aureus possesses ten extracellular proteases with mostly unknown targets in the human proteome. To assist with bacterial protease target discovery, we have applied and compared two N-terminomics methods to investigate cleavage of human serum proteins by S. aureus V8 protease, discovering 85 host-protein targets. Among these are virulence-relevant complement, iron sequestration, clotting cascade, and host protease inhibitor proteins. Protein cleavage sites have been identified, providing insight into the disruption of host protein function by V8. Complement proteins are cleaved within peptidase and sushi domains, and host protease inhibitors are cleaved outside their protease-trapping motifs. Our data highlight the potential for further application of N-terminomics in discovery of bacterial protease substrates in other host niches and provide omics-scale insight into the role of the V8 protease in S. aureus pathogenesis.


Asunto(s)
Proteolisis , Serina Endopeptidasas/metabolismo , Staphylococcus aureus/enzimología , Albúminas/metabolismo , Proteínas Bacterianas/metabolismo , Biotinilación , Activación Enzimática , Humanos , Inflamación/patología , Metaloendopeptidasas/metabolismo , Viabilidad Microbiana , Reproducibilidad de los Resultados , Serina Endopeptidasas/química , Serina Endopeptidasas/genética , Transducción de Señal , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA