Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.158
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 187(3): 764-781.e14, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38306985

RESUMEN

Pregnancy induces dramatic metabolic changes in females; yet, the intricacies of this metabolic reprogramming remain poorly understood, especially in primates. Using cynomolgus monkeys, we constructed a comprehensive multi-tissue metabolome atlas, analyzing 273 samples from 23 maternal tissues during pregnancy. We discovered a decline in metabolic coupling between tissues as pregnancy progressed. Core metabolic pathways that were rewired during primate pregnancy included steroidogenesis, fatty acid metabolism, and arachidonic acid metabolism. Our atlas revealed 91 pregnancy-adaptive metabolites changing consistently across 23 tissues, whose roles we verified in human cell models and patient samples. Corticosterone and palmitoyl-carnitine regulated placental maturation and maternal tissue progenitors, respectively, with implications for maternal preeclampsia, diabetes, cardiac hypertrophy, and muscle and liver regeneration. Moreover, we found that corticosterone deficiency induced preeclampsia-like inflammation, indicating the atlas's potential clinical value. Overall, our multi-tissue metabolome atlas serves as a framework for elucidating the role of metabolic regulation in female health during pregnancy.


Asunto(s)
Metabolómica , Embarazo , Animales , Femenino , Humanos , Embarazo/metabolismo , Corticosterona/metabolismo , Metaboloma/fisiología , Placenta/metabolismo , Preeclampsia , Primates/metabolismo
2.
Cell ; 187(18): 4905-4925.e24, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-38971151

RESUMEN

Homologous recombination deficiency (HRD) is prevalent in cancer, sensitizing tumor cells to poly (ADP-ribose) polymerase (PARP) inhibition. However, the impact of HRD and related therapies on the tumor microenvironment (TME) remains elusive. Our study generates single-cell gene expression and T cell receptor profiles, along with validatory multimodal datasets from >100 high-grade serous ovarian cancer (HGSOC) samples, primarily from a phase II clinical trial (NCT04507841). Neoadjuvant monotherapy with the PARP inhibitor (PARPi) niraparib achieves impressive 62.5% and 73.6% response rates per RECIST v.1.1 and GCIG CA125, respectively. We identify effector regulatory T cells (eTregs) as key responders to HRD and neoadjuvant therapies, co-occurring with other tumor-reactive T cells, particularly terminally exhausted CD8+ T cells (Tex). TME-wide interferon signaling correlates with cancer cells upregulating MHC class II and co-inhibitory ligands, potentially driving Treg and Tex fates. Depleting eTregs in HRD mouse models, with or without PARP inhibition, significantly suppresses tumor growth without observable toxicities, underscoring the potential of eTreg-focused therapeutics for HGSOC and other HRD-related tumors.


Asunto(s)
Terapia Neoadyuvante , Neoplasias Ováricas , Piperidinas , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Linfocitos T Reguladores , Microambiente Tumoral , Femenino , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/patología , Neoplasias Ováricas/inmunología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Humanos , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismo , Linfocitos T Reguladores/efectos de los fármacos , Animales , Ratones , Terapia Neoadyuvante/métodos , Microambiente Tumoral/efectos de los fármacos , Piperidinas/farmacología , Piperidinas/uso terapéutico , Indazoles/uso terapéutico , Indazoles/farmacología , Recombinación Homóloga , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Línea Celular Tumoral
3.
Cell ; 186(10): 2078-2091.e18, 2023 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-37172562

RESUMEN

Neural tube (NT) defects arise from abnormal neurulation and result in the most common birth defects worldwide. Yet, mechanisms of primate neurulation remain largely unknown due to prohibitions on human embryo research and limitations of available model systems. Here, we establish a three-dimensional (3D) prolonged in vitro culture (pIVC) system supporting cynomolgus monkey embryo development from 7 to 25 days post-fertilization. Through single-cell multi-omics analyses, we demonstrate that pIVC embryos form three germ layers, including primordial germ cells, and establish proper DNA methylation and chromatin accessibility through advanced gastrulation stages. In addition, pIVC embryo immunofluorescence confirms neural crest formation, NT closure, and neural progenitor regionalization. Finally, we demonstrate that the transcriptional profiles and morphogenetics of pIVC embryos resemble key features of similarly staged in vivo cynomolgus and human embryos. This work therefore describes a system to study non-human primate embryogenesis through advanced gastrulation and early neurulation.


Asunto(s)
Defectos del Tubo Neural , Neurulación , Técnicas de Cultivo de Tejidos , Animales , Humanos , Blastocisto , Embrión de Mamíferos , Desarrollo Embrionario , Macaca fascicularis , Defectos del Tubo Neural/genética , Defectos del Tubo Neural/patología , Técnicas de Cultivo de Tejidos/métodos
4.
Cell ; 185(1): 95-112.e18, 2022 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-34995520

RESUMEN

Fingerprints are of long-standing practical and cultural interest, but little is known about the mechanisms that underlie their variation. Using genome-wide scans in Han Chinese cohorts, we identified 18 loci associated with fingerprint type across the digits, including a genetic basis for the long-recognized "pattern-block" correlations among the middle three digits. In particular, we identified a variant near EVI1 that alters regulatory activity and established a role for EVI1 in dermatoglyph patterning in mice. Dynamic EVI1 expression during human development supports its role in shaping the limbs and digits, rather than influencing skin patterning directly. Trans-ethnic meta-analysis identified 43 fingerprint-associated loci, with nearby genes being strongly enriched for general limb development pathways. We also found that fingerprint patterns were genetically correlated with hand proportions. Taken together, these findings support the key role of limb development genes in influencing the outcome of fingerprint patterning.


Asunto(s)
Dermatoglifia , Dedos/crecimiento & desarrollo , Organogénesis/genética , Polimorfismo de Nucleótido Simple , Dedos del Pie/crecimiento & desarrollo , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Animales , Pueblo Asiatico/genética , Tipificación del Cuerpo/genética , Niño , Estudios de Cohortes , Femenino , Miembro Anterior/crecimiento & desarrollo , Sitios Genéticos , Estudio de Asociación del Genoma Completo , Humanos , Proteína del Locus del Complejo MDS1 y EV11/genética , Masculino , Ratones , Persona de Mediana Edad , Adulto Joven
5.
Cell ; 182(2): 429-446.e14, 2020 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-32526206

RESUMEN

The mode of acquisition and causes for the variable clinical spectrum of coronavirus disease 2019 (COVID-19) remain unknown. We utilized a reverse genetics system to generate a GFP reporter virus to explore severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pathogenesis and a luciferase reporter virus to demonstrate sera collected from SARS and COVID-19 patients exhibited limited cross-CoV neutralization. High-sensitivity RNA in situ mapping revealed the highest angiotensin-converting enzyme 2 (ACE2) expression in the nose with decreasing expression throughout the lower respiratory tract, paralleled by a striking gradient of SARS-CoV-2 infection in proximal (high) versus distal (low) pulmonary epithelial cultures. COVID-19 autopsied lung studies identified focal disease and, congruent with culture data, SARS-CoV-2-infected ciliated and type 2 pneumocyte cells in airway and alveolar regions, respectively. These findings highlight the nasal susceptibility to SARS-CoV-2 with likely subsequent aspiration-mediated virus seeding to the lung in SARS-CoV-2 pathogenesis. These reagents provide a foundation for investigations into virus-host interactions in protective immunity, host susceptibility, and virus pathogenesis.


Asunto(s)
Betacoronavirus/genética , Infecciones por Coronavirus/patología , Infecciones por Coronavirus/virología , Neumonía Viral/patología , Neumonía Viral/virología , Sistema Respiratorio/virología , Genética Inversa/métodos , Anciano , Enzima Convertidora de Angiotensina 2 , Animales , Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/inmunología , Betacoronavirus/inmunología , Betacoronavirus/patogenicidad , COVID-19 , Línea Celular , Células Cultivadas , Chlorocebus aethiops , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/terapia , Fibrosis Quística/patología , ADN Recombinante , Femenino , Furina/metabolismo , Humanos , Inmunización Pasiva , Pulmón/metabolismo , Pulmón/patología , Pulmón/virología , Masculino , Persona de Mediana Edad , Mucosa Nasal/metabolismo , Mucosa Nasal/patología , Mucosa Nasal/virología , Pandemias , Peptidil-Dipeptidasa A/metabolismo , Neumonía Viral/inmunología , Sistema Respiratorio/patología , SARS-CoV-2 , Serina Endopeptidasas/metabolismo , Células Vero , Virulencia , Replicación Viral , Sueroterapia para COVID-19
7.
Cell ; 157(6): 1393-1404, 2014 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-24856969

RESUMEN

Voltage-gated sodium (NaV) channels control the upstroke of the action potentials in excitable cells. Multiple studies have shown distinct roles of NaV channel subtypes in human physiology and diseases, but subtype-specific therapeutics are lacking and the current efforts have been limited to small molecules. Here, we present a monoclonal antibody that targets the voltage-sensor paddle of NaV1.7, the subtype critical for pain sensation. This antibody not only inhibits NaV1.7 with high selectivity, but also effectively suppresses inflammatory and neuropathic pain in mice. Interestingly, the antibody inhibits acute and chronic itch despite well-documented differences in pain and itch modulation. Using this antibody, we discovered that NaV1.7 plays a key role in spinal cord nociceptive and pruriceptive synaptic transmission. Our studies reveal that NaV1.7 is a target for itch management, and the antibody has therapeutic potential for suppressing pain and itch. Our antibody strategy may have broad applications for voltage-gated cation channels.


Asunto(s)
Anticuerpos Monoclonales/uso terapéutico , Canal de Sodio Activado por Voltaje NAV1.7/metabolismo , Dolor/tratamiento farmacológico , Prurito/tratamiento farmacológico , Transmisión Sináptica/efectos de los fármacos , Bloqueadores del Canal de Sodio Activado por Voltaje/uso terapéutico , Secuencia de Aminoácidos , Animales , Células HEK293 , Humanos , Inflamación/inducido químicamente , Inflamación/patología , Ratones , Modelos Moleculares , Datos de Secuencia Molecular , Canal de Sodio Activado por Voltaje NAV1.7/química , Neuronas/metabolismo , Alineación de Secuencia , Médula Espinal/metabolismo
8.
Trends Biochem Sci ; 49(4): 283-285, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38238217

RESUMEN

Two reports by Dhuri et al. and Oyaghire et al., respectively, show that, through installing chiral centers at the backbone of the artificial nucleic acid, peptide nucleic acid (PNA), enhanced miRNA targeting and genome modification can be achieved, with important implications in fighting cancers and ß-thalassemia.


Asunto(s)
MicroARNs , Ácidos Nucleicos de Péptidos , MicroARNs/genética
9.
Nature ; 606(7913): 292-297, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35676428

RESUMEN

Spatially resolved vibrational mapping of nanostructures is indispensable to the development and understanding of thermal nanodevices1, modulation of thermal transport2 and novel nanostructured thermoelectric materials3-5. Through the engineering of complex structures, such as alloys, nanostructures and superlattice interfaces, one can significantly alter the propagation of phonons and suppress material thermal conductivity while maintaining electrical conductivity2. There have been no correlative experiments that spatially track the modulation of phonon properties in and around nanostructures due to spatial resolution limitations of conventional optical phonon detection techniques. Here we demonstrate two-dimensional spatial mapping of phonons in a single silicon-germanium (SiGe) quantum dot (QD) using monochromated electron energy loss spectroscopy in the transmission electron microscope. Tracking the variation of the Si optical mode in and around the QD, we observe the nanoscale modification of the composition-induced red shift. We observe non-equilibrium phonons that only exist near the interface and, furthermore, develop a novel technique to differentially map phonon momenta, providing direct evidence that the interplay between diffuse and specular reflection largely depends on the detailed atomistic structure: a major advancement in the field. Our work unveils the non-equilibrium phonon dynamics at nanoscale interfaces and can be used to study actual nanodevices and aid in the understanding of heat dissipation near nanoscale hotspots, which is crucial for future high-performance nanoelectronics.

10.
Nature ; 603(7899): 73-78, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35038717

RESUMEN

All-perovskite tandem solar cells hold the promise of surpassing the efficiency limits of single-junction solar cells1-3; however, until now, the best-performing all-perovskite tandem solar cells have exhibited lower certified efficiency than have single-junction perovskite solar cells4,5. A thick mixed Pb-Sn narrow-bandgap subcell is needed to achieve high photocurrent density in tandem solar cells6, yet this is challenging owing to the short carrier diffusion length within Pb-Sn perovskites. Here we develop ammonium-cation-passivated Pb-Sn perovskites with long diffusion lengths, enabling subcells that have an absorber thickness of approximately 1.2 µm. Molecular dynamics simulations indicate that widely used phenethylammonium cations are only partially adsorbed on the surface defective sites at perovskite crystallization temperatures. The passivator adsorption is predicted to be enhanced using 4-trifluoromethyl-phenylammonium (CF3-PA), which exhibits a stronger perovskite surface-passivator interaction than does phenethylammonium. By adding a small amount of CF3-PA into the precursor solution, we increase the carrier diffusion length within Pb-Sn perovskites twofold, to over 5 µm, and increase the efficiency of Pb-Sn perovskite solar cells to over 22%. We report a certified efficiency of 26.4% in all-perovskite tandem solar cells, which exceeds that of the best-performing single-junction perovskite solar cells. Encapsulated tandem devices retain more than 90% of their initial performance after 600 h of operation at the maximum power point under 1 Sun illumination in ambient conditions.

11.
Proc Natl Acad Sci U S A ; 121(18): e2320844121, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38652751

RESUMEN

Although water is almost transparent to visible light, we demonstrate that the air-water interface interacts strongly with visible light via what we hypothesize as the photomolecular effect. In this effect, transverse-magnetic polarized photons cleave off water clusters from the air-water interface. We use 14 different experiments to demonstrate the existence of this effect and its dependence on the wavelength, incident angle, and polarization of visible light. We further demonstrate that visible light heats up thin fogs, suggesting that this process can impact weather, climate, and the earth's water cycle and that it provides a mechanism to resolve the long-standing puzzle of larger measured clouds absorption to solar radiation than theory could predict based on bulk water optical constants. Our study suggests that the photomolecular effect should happen widely in nature, from clouds to fogs, ocean to soil surfaces, and plant transpiration and can also lead to applications in energy and clean water.

12.
Proc Natl Acad Sci U S A ; 121(17): e2321170121, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38630724

RESUMEN

Global control of infectious diseases depends on the continuous development and deployment of diverse vaccination strategies. Currently available live-attenuated and killed virus vaccines typically take a week or longer to activate specific protection by the adaptive immunity. The mosquito-transmitted Nodamura virus (NoV) is attenuated in mice by mutations that prevent expression of the B2 viral suppressor of RNA interference (VSR) and consequently, drastically enhance in vivo production of the virus-targeting small-interfering RNAs. We reported recently that 2 d after immunization with live-attenuated VSR-disabled NoV (NoVΔB2), neonatal mice become fully protected against lethal NoV challenge and develop no detectable infection. Using Rag1-/- mice that produce no mature B and T lymphocytes as a model, here we examined the hypothesis that adaptive immunity is dispensable for the RNAi-based protective immunity activated by NoVΔB2 immunization. We show that immunization of both neonatal and adult Rag1-/- mice with live but not killed NoVΔB2 induces full protection against NoV challenge at 2 or 14 d postimmunization. Moreover, NoVΔB2-induced protective antiviral immunity is virus-specific and remains effective in adult Rag1-/- mice 42 and 90 d after a single-shot immunization. We conclude that immunization with the live-attenuated VSR-disabled RNA virus vaccine activates rapid and long-lasting protective immunity against lethal challenges by a distinct mechanism independent of the adaptive immunity mediated by B and T cells. Future studies are warranted to determine whether additional animal and human viruses attenuated by VSR inactivation induce similar protective immunity in healthy and adaptive immunity-compromised individuals.


Asunto(s)
Vacunas contra la Influenza , Vacunas Virales , Virus , Animales , Humanos , Ratones , Linfocitos T , Interferencia de ARN , Vacunas Atenuadas , Proteínas de Homeodominio , Anticuerpos Antivirales
13.
Hum Mol Genet ; 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39239979

RESUMEN

Common variants in the MicroRNA 137 host gene MIR137HG and its adjacent gene DPYD have been associated with schizophrenia risk and the latest Psychiatric Genomics Consortium (PGC). Genome-Wide Association Study on schizophrenia has confirmed and extended these findings. To elucidate the association of schizophrenia risk-associated SNPs in this genomic region, we examined the expression of both mature and immature transcripts of the miR-137 host gene (MIR137HG) in the dorsolateral prefrontal cortex (DLPFC) and subgenual anterior cingulate cortex (sgACC) of postmortem brain samples of donors with schizophrenia and psychiatrically-unaffected controls using qPCR and RNA-Seq approaches. No differential expression of miR-137, MIR137HG, or its transcripts was observed. Two schizophrenia risk-associated SNPs identified in the PGC study, rs11165917 (DLPFC: P = 2.0e-16; sgACC: P = 6.4e-10) and rs4274102 (DLPFC: P = 0.036; sgACC: P = 0.002), were associated with expression of the MIR137HG long non-coding RNA transcript MIR137HG-203 (ENST00000602672.2) in individuals of European ancestry. Carriers of the minor (risk) allele of rs11165917 had significantly lower expression of MIR137HG-203 compared with those carrying the major allele. However, we were unable to validate this result by short-read sequencing of RNA extracted from DLPFC or sgACC tissue. This finding suggests that immature transcripts of MIR137HG may contribute to genetic risk for schizophrenia.

14.
Proc Natl Acad Sci U S A ; 120(45): e2312751120, 2023 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-37903260

RESUMEN

We report in this work several unexpected experimental observations on evaporation from hydrogels under visible light illumination. 1) Partially wetted hydrogels become absorbing in the visible spectral range, where the absorption by both the water and the hydrogel materials is negligible. 2) Illumination of hydrogel under solar or visible-spectrum light-emitting diode leads to evaporation rates exceeding the thermal evaporation limit, even in hydrogels without additional absorbers. 3) The evaporation rates are wavelength dependent, peaking at 520 nm. 4) Temperature of the vapor phase becomes cooler under light illumination and shows a flat region due to breaking-up of the clusters that saturates air. And 5) vapor phase transmission spectra under light show new features and peak shifts. We interpret these observations by introducing the hypothesis that photons in the visible spectrum can cleave water clusters off surfaces due to large electrical field gradients and quadrupole force on molecular clusters. We call the light-induced evaporation process the photomolecular effect. The photomolecular evaporation might be happening widely in nature, potentially impacting climate and plants' growth, and can be exploited for clean water and energy technologies.

15.
PLoS Genet ; 19(11): e1011052, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37976306

RESUMEN

Rapid and uniform seed germination is required for modern cropping system. Thus, it is important to optimize germination performance through breeding strategies in maize, in which identification for key regulators is needed. Here, we characterized an AP2/ERF transcription factor, ZmEREB92, as a negative regulator of seed germination in maize. Enhanced germination in ereb92 mutants is contributed by elevated ethylene signaling and starch degradation. Consistently, an ethylene signaling gene ZmEIL7 and an α-amylase gene ZmAMYa2 are identified as direct targets repressed by ZmEREB92. OsERF74, the rice ortholog of ZmEREB92, shows conserved function in negatively regulating seed germination in rice. Importantly, this orthologous gene pair is likely experienced convergently selection during maize and rice domestication. Besides, mutation of ZmEREB92 and OsERF74 both lead to enhanced germination under cold condition, suggesting their regulation on seed germination might be coupled with temperature sensitivity. Collectively, our findings uncovered the ZmEREB92-mediated regulatory mechanism of seed germination in maize and provide breeding targets for maize and rice to optimize seed germination performance towards changing climates.


Asunto(s)
Germinación , Oryza , Germinación/genética , Almidón/genética , Almidón/metabolismo , Zea mays/metabolismo , Semillas/genética , Semillas/metabolismo , Fitomejoramiento , Etilenos/metabolismo , Regulación de la Expresión Génica de las Plantas , Oryza/metabolismo
16.
J Biol Chem ; : 107779, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39276933

RESUMEN

Alterations in anion balance potential, along with the involvement of cation-chloride cotransporters, play pivotal roles in the development of hyperalgesia after peripheral nerve injury (PNI). Chloride voltage-gated channel 7 (CLCN7) is the predominant member of the CLC protein family. Investigations on CLCN7 have focused primarily on its involvement in osteosclerosis and lysosomal storage disorders; nevertheless, its contribution to neuropathic pain (NP) has not been determined. In this investigation, we noted high expression of CLCN7 in neurons situated within the spinal dorsal horns (SDHs) and dorsal root ganglions (DRGs). Immunofluorescence analysis revealed that CLCN7 was predominantly distributed among IB4-positive and CGRP-positive neurons. Furthermore, the expression of CLCN7 was observed to be mainly reduced in neurons within the SDHs and in small and medium-sized neurons located in the DRGs of spared nerve injury (SNI) mice. Knockdown of CLCN7 via siRNA in the DRGs resulted in increased mechanical and thermal hyperalgesia in naïve mice. Furthermore, the excitability of cultured DRG neurons in vitro was augmented upon treatment with CLCN7 siRNA. These findings suggested that CLCN7 downregulation following SNI was crucial for the manifestation of mechanical and thermal hyperalgesia, highlighting potential targeting strategies for treating NP.

17.
Am J Hum Genet ; 109(7): 1317-1337, 2022 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-35714612

RESUMEN

Over the past two decades, genome-wide association studies (GWASs) have successfully advanced our understanding of the genetic basis of complex traits. Despite the fruitful discovery of GWASs, most GWAS samples are collected from European populations, and these GWASs are often criticized for their lack of ancestry diversity. Trans-ancestry association mapping (TRAM) offers an exciting opportunity to fill the gap of disparities in genetic studies between non-Europeans and Europeans. Here, we propose a statistical method, LOG-TRAM, to leverage the local genetic architecture for TRAM. By using biobank-scale datasets, we showed that LOG-TRAM can greatly improve the statistical power of identifying risk variants in under-represented populations while producing well-calibrated p values. We applied LOG-TRAM to the GWAS summary statistics of various complex traits/diseases from BioBank Japan, UK Biobank, and African populations. We obtained substantial gains in power and achieved effective correction of confounding biases in TRAM. Finally, we showed that LOG-TRAM can be successfully applied to identify ancestry-specific loci and the LOG-TRAM output can be further used for construction of more accurate polygenic risk scores in under-represented populations.


Asunto(s)
Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple , Población Negra/genética , Predisposición Genética a la Enfermedad , Estructuras Genéticas , Estudio de Asociación del Genoma Completo/métodos , Humanos , Herencia Multifactorial/genética , Polimorfismo de Nucleótido Simple/genética
18.
Brief Bioinform ; 24(6)2023 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-37779248

RESUMEN

Antimicrobial peptides (AMPs) are promising candidates for the development of new antibiotics due to their broad-spectrum activity against a range of pathogens. However, identifying AMPs through a huge bunch of candidates is challenging due to their complex structures and diverse sequences. In this study, we propose SenseXAMP, a cross-modal framework that leverages semantic embeddings of and protein descriptors (PDs) of input sequences to improve the identification performance of AMPs. SenseXAMP includes a multi-input alignment module and cross-representation fusion module to explore the hidden information between the two input features and better leverage the fusion feature. To better address the AMPs identification task, we accumulate the latest annotated AMPs data to form more generous benchmark datasets. Additionally, we expand the existing AMPs identification task settings by adding an AMPs regression task to meet more specific requirements like antimicrobial activity prediction. The experimental results indicated that SenseXAMP outperformed existing state-of-the-art models on multiple AMP-related datasets including commonly used AMPs classification datasets and our proposed benchmark datasets. Furthermore, we conducted a series of experiments to demonstrate the complementary nature of traditional PDs and protein pre-training models in AMPs tasks. Our experiments reveal that SenseXAMP can effectively combine the advantages of PDs to improve the performance of protein pre-training models in AMPs tasks.


Asunto(s)
Péptidos Catiónicos Antimicrobianos , Péptidos Antimicrobianos , Antibacterianos
19.
Am J Pathol ; 194(6): 1062-1077, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38492733

RESUMEN

Autism spectrum disorder (ASD) is a prevalent neurodevelopmental disorder with a complex etiology. Recent evidence suggests that dopamine plays a crucial role in neural development. However, whether and how disrupted dopaminergic signaling during development contributes to ASD remains unknown. In this study, human brain RNA sequencing transcriptome analysis revealed a significant correlation between changes in dopaminergic signaling pathways and neural developmental signaling in ASD patients. In the zebrafish model, disrupted developmental dopaminergic signaling led to neural circuit abnormalities and behavior reminiscent of autism. Dopaminergic signaling may impact neuronal specification by potentially modulating integrins. These findings shed light on the mechanisms underlying the link between disrupted developmental dopamine signaling and ASD, and they point to the possibility of targeting dopaminergic signaling in early development for ASD treatment.


Asunto(s)
Trastorno del Espectro Autista , Dopamina , Fenotipo , Transducción de Señal , Pez Cebra , Trastorno del Espectro Autista/metabolismo , Trastorno del Espectro Autista/genética , Trastorno del Espectro Autista/patología , Animales , Humanos , Dopamina/metabolismo , Encéfalo/metabolismo , Encéfalo/patología , Modelos Animales de Enfermedad , Masculino , Vías Nerviosas/metabolismo , Femenino , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA