Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
PLoS Pathog ; 19(5): e1011387, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37200402

RESUMEN

Infections caused by members of the mycobacterium tuberculosis complex [MTC] and nontuberculous mycobacteria [NTM] can induce widespread morbidity and mortality in people. Mycobacterial infections cause both a delayed immune response, which limits rate of bacterial clearance, and formation of granulomas, which contain bacterial spread, but also contribute to lung damage, fibrosis, and morbidity. Granulomas also limit access of antibiotics to bacteria, which may facilitate development of resistance. Bacteria resistant to some or all antibiotics cause significant morbidity and mortality, and newly developed antibiotics readily engender resistance, highlighting the need for new therapeutic approaches. Imatinib mesylate, a cancer drug used to treat chronic myelogenous leukemia [CML] that targets Abl and related tyrosine kinases, is a possible host-directed therapeutic [HDT] for mycobacterial infections, including those causing TB. Here, we use the murine Mycobacterium marinum [Mm] infection model, which induces granulomatous tail lesions. Based on histological measurements, imatinib reduces both lesion size and inflammation of surrounding tissue. Transcriptomic analysis of tail lesions indicates that imatinib induces gene signatures indicative of immune activation and regulation at early time points post infection that resemble those seen at later ones, suggesting that imatinib accelerates but does not substantially alter anti-mycobacterial immune responses. Imatinib likewise induces signatures associated with cell death and promotes survival of bone marrow-derived macrophages [BMDMs] in culture following infection with Mm. Notably, the capacity of imatinib to limit formation and growth of granulomas in vivo and to promote survival of BMDMs in vitro depends upon caspase 8, a key regulator of cell survival and death. These data provide evidence for the utility of imatinib as an HDT for mycobacterial infections in accelerating and regulating immune responses, and limiting pathology associated with granulomas, which may mitigate post-treatment morbidity.


Asunto(s)
Piperazinas , Pirimidinas , Humanos , Animales , Ratones , Mesilato de Imatinib/farmacología , Pirimidinas/farmacología , Piperazinas/farmacología , Benzamidas , Antibacterianos/uso terapéutico , Granuloma/tratamiento farmacológico
2.
Sci Adv ; 9(8): eade8653, 2023 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-36827370

RESUMEN

During aging, environmental stressors and mutations along with reduced DNA repair cause germ cell aneuploidy and genome instability, which limits fertility and embryo development. Benevolent commensal microbiota and dietary plants secrete indoles, which improve healthspan and reproductive success, suggesting regulation of germ cell quality. We show that indoles prevent aneuploidy and promote DNA repair and embryo viability, which depends on age and genotoxic stress levels and affects embryo quality across generations. In young animals or with low doses of radiation, indoles promote DNA repair and embryo viability; however, in older animals or with high doses of radiation, indoles promote death of the embryo. These studies reveal a previously unknown quality control mechanism by which indole integrates DNA repair and cell death responses to preclude germ cell aneuploidy and ensure transgenerational genome integrity. Such regulation affects healthy aging, reproductive senescence, cancer, and the evolution of genetic diversity in invertebrates and vertebrates.


Asunto(s)
Aneuploidia , Microbiota , Animales , Reparación del ADN , Muerte Celular , Indoles
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA