Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sensors (Basel) ; 24(15)2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39124061

RESUMEN

In experiments considering cell handling in microchannels, cell sedimentation in the storage container is a key problem because it affects the reproducibility of the experiments. Here, a simple and low-cost cell mixing device (CMD) is presented; the device is designed to prevent the sedimentation of cells in a syringe during their injection into a microfluidic channel. The CMD is based on a slider crank device made of 3D-printed parts that, combined with a permanent magnet, actuate a stir bar placed into the syringe containing the cells. By using A549 cell lines, the device is characterized in terms of cell viability (higher than 95%) in different mixing conditions, by varying the oscillation frequency and the overall mixing time. Then, a dedicated microfluidic experiment is designed to evaluate the injection frequency of the cells within a microfluidic chip. In the presence of the CMD, a higher number of cells are injected into the microfluidic chip with respect to the static conditions (2.5 times), proving that it contrasts cell sedimentation and allows accurate cell handling. For these reasons, the CMD can be useful in microfluidic experiments involving single-cell analysis.


Asunto(s)
Dispositivos Laboratorio en un Chip , Humanos , Células A549 , Supervivencia Celular , Técnicas Analíticas Microfluídicas/instrumentación , Magnetismo/instrumentación , Separación Celular/instrumentación , Diseño de Equipo , Análisis de la Célula Individual/instrumentación
2.
Sensors (Basel) ; 23(12)2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37420565

RESUMEN

Magnetic beads (or particles) having a size between 1 and 5 µm are largely used in many biochemical assays devoted to both purification and quantification of cells, nucleic acids, or proteins. Unfortunately, the use of these beads within microfluidic devices suffers from natural precipitation because of their size and density. The strategies applied thus far to cells or polymeric particles cannot be extended to magnetic beads, mainly due to their magnetization and their higher densities. We report an effective shaking device capable of preventing the sedimentation of beads that are stored in a custom PCR tube. After the characterization of the operating principle, the device is validated for magnetic beads in droplets, leading to an equal distribution between the droplets, barely affecting their generation.


Asunto(s)
Técnicas Analíticas Microfluídicas , Ácidos Nucleicos , Microfluídica , Campos Magnéticos , Dispositivos Laboratorio en un Chip
3.
ACS Appl Mater Interfaces ; 16(3): 4271-4282, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38194671

RESUMEN

Controlled splitting of liquid droplets is a key function in many microfluidic applications. In recent years, various methodologies have been used to accomplish this task. Here, we present an optofluidic technique based on an engineered surface formed by coating a z-cut iron-doped lithium niobate crystal with a lubricant-infused layer, which provides a very slippery surface. Illuminating the crystal with a light spot induces surface charges of opposite signs on the two crystal faces because of the photovoltaic effect. If the light spot is sufficiently intense, millimetric water droplets placed near the illuminated spot split into two charged fragments, one fragment being trapped by the bright spot and the other moving away from it. The latter fragment does not move randomly but rather follows one of three well-defined trajectories separated by 120°, which reflect the anisotropic crystalline structure of Fe:LiNbO3. Numerical simulations explain the behavior of water droplets in the framework of the forces induced by the interplay of pyroelectric, piezoelectric, and photovoltaic effects, which originate simultaneously inside the illuminated crystal. Such a synergetic effect can provide a valuable feature in applications that require splitting and coalescence of droplets, such as chemical microreactors and biological encapsulation and screening.

4.
J Colloid Interface Sci ; 644: 487-495, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37146485

RESUMEN

HYPOTHESIS: Droplets of yield stress fluids (YSFs), i.e. fluids that can flow only if they are subjected to a stress above a critical value and otherwise deform like solids, hardly move on solid surfaces due to their high viscosity. The use of highly slippery lubricated surfaces can shed light on the mobility of YSF droplets, which include everyday soft materials, such as toothpaste or mayonnaise, and biological fluids, such as mucus. EXPERIMENTS: The spreading and mobility of droplets of aqueous solutions of swollen Carbopol microgels were studied on lubricant infused surfaces. These solutions represent a model system of YSFs. Dynamical phase diagrams were established by varying the concentration of the solutions and the inclination angle of the surfaces. FINDINGS: Carbopol droplets deposited on lubricated surfaces could move even at low inclination angles. The droplets were found to slide because of the slip of the flowing oil that covered the solid substrate. However, as the descending speed increased, the droplets rolled down. Rolling was favored at high inclinations and low concentrations. A simple criterion based on the ratio between the yield stress of the Carbopol suspensions and the gravitational stress acting on the Carbopol droplets was found to nicely identify the transition between the two regimes.

5.
Micromachines (Basel) ; 13(2)2022 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-35208440

RESUMEN

The actuation of droplets on a surface is extremely relevant for microfluidic applications. In recent years, various methodologies have been used. A promising solution relies on iron-doped lithium niobate crystals that, when illuminated, generate an evanescent electric field in the surrounding space due to the photovoltaic effect. This field can be successfully exploited to control the motion of water droplets. Here, we present an experimental method to determine the attractive force exerted by the evanescent field. It consists of the analysis of the elongation of a pendant droplet and its detachment from the suspending syringe needle, caused by the illumination of an iron-doped lithium niobate crystal. We show that this interaction resembles that obtained by applying a voltage between the needle and a metallic substrate, and a quantitative investigation of these two types of actuation yields similar results. Pendant droplet tensiometry is then demonstrated to offer a simple solution for quickly mapping out the force at different distances from the crystal, generated by the photovoltaic effect and its temporal evolution, providing important quantitative data for the design and characterization of optofluidic devices based on lithium niobate crystals.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA