Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Nano Lett ; 24(14): 4265-4271, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38557055

RESUMEN

Understanding the interplay between bright and dark exciton states is crucial for deciphering the luminescence properties of low-dimensional materials. The origin of the outstanding brightness of lead halide perovskites remains elusive. Here, we analyze temperature-dependent time-resolved photoluminescence to investigate the population mixing between bright and dark exciton sublevels in individual CsPbBr3 nanocrystals in the intermediate confinement regime. We extract bright and dark exciton decay rates and show quantitatively that the decay dynamics can only be reproduced with second-order phonon transitions. Furthermore, we find that any exciton sublevel ordering is compatible with the most likely population transfer mechanism. The remarkable brightness of lead halide perovskite nanocrystals rather stems from a reduced asymmetry between bright-to-dark and dark-to-bright conversion originating from the peculiar second-order phonon-assisted transitions that freeze bright-dark conversion at low temperatures together with the very fast radiative recombination and favorable degeneracy of the bright exciton state.

2.
Nano Lett ; 23(8): 3607-3613, 2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37014137

RESUMEN

Lead halide perovskite nanocrystals are promising materials for classical and quantum light emission. To understand these outstanding properties, a thorough analysis of the band-edge exciton emission is needed, which is not reachable in ensemble and room-temperature studies because of broadening effects. Here, we report on a cryogenic-temperature study of the photoluminescence of single CsPbBr3 nanocrystals in the intermediate quantum confinement regime. We reveal the size-dependence of the spectral features observed: the bright triplet exciton energy splittings, the trion and biexciton binding energies, and the optical phonon replica spectrum. In addition, we show that bright triplet energy splittings are consistent with a pure exchange model and that the variety of polarization properties and spectra recorded can be rationalized simply by considering the orientation of the emitting dipoles and the populations of the emitting states.

3.
Nature ; 541(7635): 62-67, 2017 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-27974803

RESUMEN

'Blinking', or 'fluorescence intermittency', refers to a random switching between 'ON' (bright) and 'OFF' (dark) states of an emitter; it has been studied widely in zero-dimensional quantum dots and molecules, and scarcely in one-dimensional systems. A generally accepted mechanism for blinking in quantum dots involves random switching between neutral and charged states (or is accompanied by fluctuations in charge-carrier traps), which substantially alters the dynamics of radiative and non-radiative decay. Here, we uncover a new type of blinking effect in vertically stacked, two-dimensional semiconductor heterostructures, which consist of two distinct monolayers of transition metal dichalcogenides (TMDs) that are weakly coupled by van der Waals forces. Unlike zero-dimensional or one-dimensional systems, two-dimensional TMD heterostructures show a correlated blinking effect, comprising randomly switching bright, neutral and dark states. Fluorescence cross-correlation spectroscopy analyses show that a bright state occurring in one monolayer will simultaneously lead to a dark state in the other monolayer, owing to an intermittent interlayer carrier-transfer process. Our findings suggest that bilayer van der Waals heterostructures provide unique platforms for the study of charge-transfer dynamics and non-equilibrium-state physics, and could see application as correlated light emitters in quantum technology.

4.
Nano Lett ; 21(7): 3331-3339, 2021 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-33797259

RESUMEN

Exciton-polaritons, hybrid light-matter bosonic quasiparticles, can condense into a single quantum state, i.e., forming a polariton Bose-Einstein condensate (BEC), which represents a crucial step for the development of nanophotonic technology. Recently, atomically thin transition-metal dichalcogenides (TMDs) emerged as promising candidates for novel polaritonic devices. Although the formation of robust valley-polaritons has been realized up to room temperature, the demonstration of polariton lasing remains elusive. Herein, we report for the first time the realization of this important milestone in a TMD microcavity at room temperature. Continuous wave pumped polariton lasing is evidenced by the macroscopic occupation of the ground state, which undergoes a nonlinear increase of the emission along with the emergence of temporal coherence, the presence of an exciton fraction-controlled threshold and the buildup of linear polarization. Our work presents a critically important step toward exploiting nonlinear polariton-polariton interactions, as well as offering a new platform for thresholdless lasing.

5.
Nano Lett ; 20(5): 3673-3680, 2020 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-32212737

RESUMEN

Optically bright lead halide perovskite nanocrystals of different morphologies ranging from nanocubes to flat nanoplatelets to elongated nanowires have been reported. The morphology of the nanocrystals is expected to affect various properties such as the band edge energy and the electron-hole exchange interaction. However, aside from nanocubes, the investigation of optical properties in the lead halide perovskite nanocrystals of different morphologies at the single emitter level has been lacking. We have performed optical spectroscopy in single CsPbBr3 nanoplatelets and observed single photon emission without blinking. Furthermore, the photoluminescence emission exhibits excitonic fine structure peaks similar to what has been previously observed in nanocubes. Our work stimulates further investigations into the excitonic and quantum optics properties when the lateral size and morphology can be further controlled in lead halide perovskite nanocrystals.

6.
Phys Rev Lett ; 123(3): 033602, 2019 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-31386483

RESUMEN

Scalable quantum photonic networks require coherent excitation of quantum emitters. However, many solid-state systems can undergo a transition to a dark shelving state that inhibits the resonance fluorescence. Here, we demonstrate that by a controlled gating using a weak nonresonant laser, the resonant fluorescence can be recovered and amplified for single germanium vacancies. Employing the gated resonance excitation, we achieve optically stable resonance fluorescence of germanium vacancy centers. Our results are pivotal for the deployment of diamond color centers as reliable building blocks for scalable solid-state quantum networks.

7.
Nano Lett ; 17(6): 3982-3988, 2017 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-28541055

RESUMEN

Polariton lasing is the coherent emission arising from a macroscopic polariton condensate first proposed in 1996. Over the past two decades, polariton lasing has been demonstrated in a few inorganic and organic semiconductors in both low and room temperatures. Polariton lasing in inorganic materials significantly relies on sophisticated epitaxial growth of crystalline gain medium layers sandwiched by two distributed Bragg reflectors in which combating the built-in strain and mismatched thermal properties is nontrivial. On the other hand, organic active media usually suffer from large threshold density and weak nonlinearity due to the Frenkel exciton nature. Further development of polariton lasing toward technologically significant applications demand more accessible materials, ease of device fabrication, and broadly tunable emission at room temperature. Herein, we report the experimental realization of room-temperature polariton lasing based on an epitaxy-free all-inorganic cesium lead chloride perovskite nanoplatelet microcavity. Polariton lasing is unambiguously evidenced by a superlinear power dependence, macroscopic ground-state occupation, blueshift of the ground-state emission, narrowing of the line width and the buildup of long-range spatial coherence. Our work suggests considerable promise of lead halide perovskites toward large-area, low-cost, high-performance room-temperature polariton devices and coherent light sources extending from the ultraviolet to near-infrared range.

8.
Phys Rev Lett ; 114(6): 067401, 2015 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-25723243

RESUMEN

We revisit Mandel's notion that the degree of coherence equals the degree of indistinguishability by performing Hong-Ou-Mandel- (HOM-)type interferometry with single photons elastically scattered by a cw resonantly driven excitonic transition of an InAs/GaAs epitaxial quantum dot. We present a comprehensive study of the temporal profile of the photon coalescence phenomenon which shows that photon indistinguishability can be tuned by the excitation laser source, in the same way as their coherence time. A new figure of merit, the coalescence time window, is introduced to quantify the delay below which two photons are indistinguishable. This criterion sheds new light on the interpretation of HOM experiments under cw excitation, particularly when photon coherence times are longer than the temporal resolution of the detectors. The photon indistinguishability is extended over unprecedented time scales beyond the detectors' response time, thus opening new perspectives to conducting quantum optics with single photons and conventional detectors.

9.
Sci Adv ; 4(10): eaau0244, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30397645

RESUMEN

Novel technological applications significantly favor alternatives to electrons toward constructing low power-consuming, high-speed all-optical integrated optoelectronic devices. Polariton condensates, exhibiting high-speed coherent propagation and spin-based behavior, attract considerable interest for implementing the basic elements of integrated optoelectronic devices: switching, transport, and logic. However, the implementation of this coherent polariton condensate flow is typically limited to cryogenic temperatures, constrained by small exciton binding energy in most semiconductor microcavities. Here, we demonstrate the capability of long-range nonresonantly excited polariton condensate flow at room temperature in a one-dimensional all-inorganic cesium lead bromide (CsPbBr3) perovskite microwire microcavity. The polariton condensate exhibits high-speed propagation over macroscopic distances of 60 µm while still preserving the long-range off-diagonal order. Our findings pave the way for using coherent polariton condensate flow for all-optical integrated logic circuits and polaritonic devices operating at room temperature.

10.
ACS Nano ; 12(8): 8382-8389, 2018 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-30089200

RESUMEN

Two-dimensional (2D) organic-inorganic perovskite semiconductors with natural multiquantum well structures and confined 2D excitons are intriguing for the study of strong exciton-photon coupling, due to their large exciton binding energy and oscillation strength. This strong coupling leads to a formation of the half-light half-matter bosonic quasiparticle called exciton-polariton, consisting of a linear superposition state between photonic and excitonic states. Here, we demonstrate room temperature strong coupling in exfoliated wavelength-tunable 2D organic-inorganic perovskite semiconductors embedded into a planar microcavity, exhibiting large energetic splitting-to-line width ratios (>34.2). Angular-dependent spectroscopy measurements reveal that hybridized polariton states act as an ultrafast and reversible energy oscillation, involving 2D perovskite exciton, cavity modes (CM), and Bragg modes of the distributed Bragg reflector. Meanwhile, sizable hybrid particles dominantly couple to the measured optical field through the CMs. Our findings advocate a considerable promise of 2D organic-inorganic perovskite to explore fundamental quantum phenomena such as Bose-Einstein condensation, superfluidity, and exciton-polariton networks.

11.
Nat Commun ; 9(1): 3470, 2018 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-30150689

RESUMEN

Graphene being a zero-gap material, considerable efforts have been made to develop semiconductors whose structure is compatible with its hexagonal lattice. Size reduction is a promising way to achieve this objective. The reduction of both dimensions of graphene leads to graphene quantum dots. Here, we report on a single-emitter study that directly addresses the intrinsic emission properties of graphene quantum dots. In particular, we show that they are efficient and stable single-photon emitters at room temperature and that their emission wavelength can be modified through the functionalization of their edges. Finally, the investigation of the intersystem crossing shows that the short triplet lifetime and the low crossing yield are in agreement with the high brightness of these quantum emitters. These results represent a step-forward in performing chemistry engineering for the design of quantum emitters.

12.
ACS Nano ; 6(10): 8796-802, 2012 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-23005601

RESUMEN

Energy transfer in noncovalently bound porphyrin/carbon nanotube compounds is investigated at the single-nanocompound scale. Excitation spectroscopy of the luminescence of the nanotube shows two resonances arising from intrinsic excitation of the nanotube and from energy transfer from the porphyrin. Polarization diagrams show that both resonances are highly anisotropic, with a preferred direction along the tube axis. The energy transfer is thus strongly anisotropic despite the almost isotropic absorption of porphyrins. We account for this result by local field effects induced by the large optical polarizability of nanotubes. We show that the local field correction extends over several nanometers outside the nanotubes and drives the overall optical response of functionalized nanotubes.


Asunto(s)
Nanotubos de Carbono/química , Nanotubos de Carbono/ultraestructura , Campos Electromagnéticos , Transferencia de Energía , Ensayo de Materiales , Tamaño de la Partícula , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA