Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
J Cardiovasc Pharmacol ; 78(5): e703-e713, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34369899

RESUMEN

ABSTRACT: Maturation of fibrillar collagen is known to play a crucial role in the pathophysiology of myocardial fibrosis. Procollagen C-proteinase enhancer 1 (PCPE1) has a key role in procollagen maturation and collagen fibril formation. The phenotype of both male and female PCPE1 knock-out mice was investigated under basal conditions to explore the potential of PCPE1 as a therapeutic target in heart failure. Global constitutive PCPE1-/- mice were generated. Serum procollagen I C-terminal propeptide, organ histology, and cutaneous wound healing were assessed in both wild type (WT) and PCPE1-/- mice. In addition, the cardiac expression of genes involved in collagen metabolism was investigated and the total and insoluble cardiac collagen contents determined. Cardiac function was evaluated by echocardiography. No differences in survival, clinical chemistry, or organ histology were observed in PCPE1-/- mice compared with WT. Serum procollagen I C-terminal propeptide was lower in PCPE1-/- mice. Cardiac mRNA expression of Bmp1, Col1a1, Col3a1, and Loxl2 was similar, whereas Tgfb and Loxl1 mRNA levels were decreased in PCPE1-/- mice compared with sex-matched WT. No modification of total or insoluble cardiac collagen content was observed between the 2 strains. Ejection fraction was slightly decreased in PCPE1-/- male mice, but not in females. Finally, wound healing was not altered in PCPE1-/- mice. PCPE1 deficiency does not trigger any major liabilities and does not affect cardiac collagen content nor its function under basal conditions. Further studies are required to evaluate its role under stressed conditions and determine its suitability as a therapeutic target for heart failure.


Asunto(s)
Colágeno/metabolismo , Proteínas de la Matriz Extracelular/deficiencia , Miocardio/metabolismo , Aminoácido Oxidorreductasas/genética , Aminoácido Oxidorreductasas/metabolismo , Animales , Proteína Morfogenética Ósea 1/genética , Proteína Morfogenética Ósea 1/metabolismo , Colágeno/genética , Cadena alfa 1 del Colágeno Tipo I/genética , Cadena alfa 1 del Colágeno Tipo I/metabolismo , Colágeno Tipo III/genética , Colágeno Tipo III/metabolismo , Proteínas de la Matriz Extracelular/genética , Femenino , Regulación de la Expresión Génica , Genotipo , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Fragmentos de Péptidos/sangre , Fenotipo , Procolágeno/sangre , Volumen Sistólico , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/metabolismo , Función Ventricular Izquierda , Cicatrización de Heridas
2.
Circulation ; 137(21): 2256-2273, 2018 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-29217642

RESUMEN

BACKGROUND: Myocardial metabolic impairment is a major feature in chronic heart failure. As the major coenzyme in fuel oxidation and oxidative phosphorylation and a substrate for enzymes signaling energy stress and oxidative stress response, nicotinamide adenine dinucleotide (NAD+) is emerging as a metabolic target in a number of diseases including heart failure. Little is known on the mechanisms regulating homeostasis of NAD+ in the failing heart. METHODS: To explore possible alterations of NAD+ homeostasis in the failing heart, we quantified the expression of NAD+ biosynthetic enzymes in the human failing heart and in the heart of a mouse model of dilated cardiomyopathy (DCM) triggered by Serum Response Factor transcription factor depletion in the heart (SRFHKO) or of cardiac hypertrophy triggered by transverse aorta constriction. We studied the impact of NAD+ precursor supplementation on cardiac function in both mouse models. RESULTS: We observed a 30% loss in levels of NAD+ in the murine failing heart of both DCM and transverse aorta constriction mice that was accompanied by a decrease in expression of the nicotinamide phosphoribosyltransferase enzyme that recycles the nicotinamide precursor, whereas the nicotinamide riboside kinase 2 (NMRK2) that phosphorylates the nicotinamide riboside precursor is increased, to a higher level in the DCM (40-fold) than in transverse aorta constriction (4-fold). This shift was also observed in human failing heart biopsies in comparison with nonfailing controls. We show that the Nmrk2 gene is an AMP-activated protein kinase and peroxisome proliferator-activated receptor α responsive gene that is activated by energy stress and NAD+ depletion in isolated rat cardiomyocytes. Nicotinamide riboside efficiently rescues NAD+ synthesis in response to FK866-mediated inhibition of nicotinamide phosphoribosyltransferase and stimulates glycolysis in cardiomyocytes. Accordingly, we show that nicotinamide riboside supplementation in food attenuates the development of heart failure in mice, more robustly in DCM, and partially after transverse aorta constriction, by stabilizing myocardial NAD+ levels in the failing heart. Nicotinamide riboside treatment also robustly increases the myocardial levels of 3 metabolites, nicotinic acid adenine dinucleotide, methylnicotinamide, and N1-methyl-4-pyridone-5-carboxamide, that can be used as validation biomarkers for the treatment. CONCLUSIONS: The data show that nicotinamide riboside, the most energy-efficient among NAD precursors, could be useful for treatment of heart failure, notably in the context of DCM, a disease with few therapeutic options.


Asunto(s)
Cardiomiopatía Dilatada/tratamiento farmacológico , Niacinamida/análogos & derivados , Proteínas Quinasas Activadas por AMP/metabolismo , Acrilamidas/uso terapéutico , Animales , Ácido Cítrico/metabolismo , Citocinas/genética , Citocinas/metabolismo , Suplementos Dietéticos , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Insuficiencia Cardíaca/prevención & control , Metaboloma/efectos de los fármacos , Ratones , Ratones Transgénicos , Miocitos Cardíacos/citología , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , NAD/metabolismo , Niacinamida/uso terapéutico , Nicotinamida Fosforribosiltransferasa/genética , Nicotinamida Fosforribosiltransferasa/metabolismo , PPAR alfa/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/antagonistas & inhibidores , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Piperidinas/uso terapéutico , Compuestos de Piridinio , Ratas , Factor de Respuesta Sérica/deficiencia , Factor de Respuesta Sérica/genética
3.
Development ; 140(11): 2321-33, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23674601

RESUMEN

Efficient angiogenic sprouting is essential for embryonic, postnatal and tumor development. Serum response factor (SRF) is known to be important for embryonic vascular development. Here, we studied the effect of inducible endothelial-specific deletion of Srf in postnatal and adult mice. We find that endothelial SRF activity is vital for postnatal growth and survival, and is equally required for developmental and pathological angiogenesis, including during tumor growth. Our results demonstrate that SRF is selectively required for endothelial filopodia formation and cell contractility during sprouting angiogenesis, but seems dispensable for vascular remodeling. At the molecular level, we observe that vascular endothelial growth factor A induces nuclear accumulation of myocardin-related transcription factors (MRTFs) and regulates MRTF/SRF-dependent target genes including Myl9, which is important for endothelial cell migration in vitro. We conclude that SRF has a unique function in regulating migratory tip cell behavior during sprouting angiogenesis. We hypothesize that targeting the SRF pathway could provide an opportunity to selectively target tip cell filopodia-driven angiogenesis to restrict tumor growth.


Asunto(s)
Vasos Sanguíneos/embriología , Regulación del Desarrollo de la Expresión Génica , Neovascularización Patológica , Vasos Retinianos/embriología , Factor de Respuesta Sérica/fisiología , Actinas/metabolismo , Animales , Eliminación de Gen , Perfilación de la Expresión Génica , Células Madre Hematopoyéticas/citología , Células Endoteliales de la Vena Umbilical Humana , Humanos , Ratones , Miosinas/metabolismo , Trasplante de Neoplasias , Seudópodos/metabolismo , ARN Interferente Pequeño/metabolismo , Vasos Retinianos/patología , Factor de Respuesta Sérica/metabolismo
4.
Med Sci (Paris) ; 30(11): 996-1003, 2014 Nov.
Artículo en Francés | MEDLINE | ID: mdl-25388582

RESUMEN

After the seminal discovery in 2000 that primary cilia are functional organelles which are essential for embryonic development, several mouse models of ciliopathies have been generated. The heart is frequently affected, with a large spectrum of malformations. The cilia of the node are required early in development in the determination of the left/right laterality of the embryo, which has secondary consequences on the formation of the heart. Thus, abnormal looping of the heart is a recurrent phenotype in models of ciliopathies. However, the function of primary cilia in cardiac cells remains poorly understood. Receptors such as polycystins or hedgehog receptors are usually localized in the primary cilium, raising the possibility that these signalling pathways, which are important for the septation and the growth of the heart, are transduced in primary cilia of cardiac cells. Knowledge of the roles of primary cilia at different steps of heart development and in different cardiac cell types will be essential to better understand the origin of human cardiopathies associated with ciliopathies.


Asunto(s)
Cilios/fisiología , Corazón/embriología , Animales , Trastornos de la Motilidad Ciliar/genética , Trastornos de la Motilidad Ciliar/patología , Vasos Coronarios/embriología , Desarrollo Embrionario , Corazón Fetal/crecimiento & desarrollo , Corazón Fetal/ultraestructura , Cardiopatías Congénitas/genética , Cardiopatías Congénitas/patología , Proteínas Hedgehog/genética , Proteínas Hedgehog/fisiología , Humanos , Ratones , Morfogénesis/fisiología , Receptores Patched , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/fisiología , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/fisiología , Transducción de Señal/fisiología , Receptor Smoothened , Síndrome , Canales Catiónicos TRPP/genética , Canales Catiónicos TRPP/fisiología , Vertebrados/embriología
5.
J Biol Chem ; 286(40): 35007-19, 2011 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-21768101

RESUMEN

Alterations in the balance of cytoskeleton as well as energetic proteins are involved in the cardiac remodeling occurring in dilated cardiomyopathy (DCM). We used two-dimensional DIGE proteomics as a discovery approach to identify key molecular changes taking place in a temporally controlled model of DCM triggered by cardiomyocyte-specific serum response factor (SRF) knock-out in mice. We identified muscle creatine kinase (MCK) as the primary down-regulated protein followed by α-actin and α-tropomyosin down-regulation leading to a decrease of polymerized F-actin. The early response to these defects was an increase in the amount of desmin intermediate filaments and phosphorylation of the αB-crystallin chaperone. We found that αB-crystallin and desmin progressively lose their striated pattern and accumulate at the intercalated disk and the sarcolemma, respectively. We further show that desmin is a preferential target of advanced glycation end products (AGE) in mouse and human DCM. Inhibition of CK in cultured cardiomyocytes is sufficient to recapitulate both the actin depolymerization defect and the modification of desmin by AGE. Treatment with either cytochalasin D or glyoxal, a cellular AGE, indicated that both actin depolymerization and AGE contribute to desmin disorganization. Heat shock-induced phosphorylation of αB-crystallin provides a transient protection of desmin against glyoxal in a p38 MAPK-dependent manner. Our results show that the strong down-regulation of MCK activity contributes to F-actin instability and induces post-translational modification of αB-crystallin and desmin. Our results suggest that AGE may play an important role in DCM because they alter the organization of desmin filaments that normally support stress response and mitochondrial functions in cardiomyocytes.


Asunto(s)
Actinas/metabolismo , Cardiomiopatía Dilatada/metabolismo , Forma MM de la Creatina-Quinasa/deficiencia , Forma MM de la Creatina-Quinasa/genética , Desmina/metabolismo , Productos Finales de Glicación Avanzada/metabolismo , Alelos , Animales , Electroforesis en Gel Bidimensional , Ventrículos Cardíacos/patología , Homocigoto , Humanos , Espectrometría de Masas/métodos , Ratones , Modelos Biológicos , Miocitos Cardíacos/citología , Ratas , Tropomiosina/metabolismo , Cadena B de alfa-Cristalina/química
6.
BMC Cell Biol ; 12: 51, 2011 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-22107957

RESUMEN

BACKGROUND: Intermediate filaments (IFs) are major components of the mammalian cytoskeleton and expressed in cell-type-specific patterns. Morphological changes during cell differentiation are linked to IF network remodeling. However, little is known concerning the presence and the role of IFs in embryonic stem (ES) cells and during their differentiation. RESULTS: We have examined the expression profile of synemin isoforms in mouse pluripotent ES cells and during their neural differentiation induced by retinoic acid. Using RT-PCR, Western blotting and immunostaining, we show that synemin M is present at both mRNA and protein levels in undifferentiated ES cells as early as pluripotency factor Oct-3/4 and IF keratin 8. Synemin H was produced only in neural precursors when neural differentiation started, concurrently with synemin M, nestin and glial fibrillary acidic protein. However, both synemin H and M were restricted to the progenitor line during the neural differentiation program. Our in vivo analysis also confirmed the expression of synemins H/M in multipotent neural stem cells in the subventricular zone of the adult brain, a neurogenic germinal niche of the mice. Knocking down synemin in ES cells by shRNA lentiviral particles transduction has no influence on expression of Oct4, Nanog and SOX2, but decreased keratin 8 expression. CONCLUSIONS: Our study shows a developmental stage specific regulation of synemin isoforms in ES cells and its neural derivatives. These findings represent the first evidence that synemins could potentially be useful markers for distinguishing multipotent ES cells from undifferentiated neural stem cells and more committed progenitor cells.


Asunto(s)
Células Madre Embrionarias/metabolismo , Regulación Neoplásica de la Expresión Génica , Proteínas de Filamentos Intermediarios/metabolismo , Animales , Diferenciación Celular , Proteínas de Homeodominio/metabolismo , Proteínas de Filamentos Intermediarios/antagonistas & inhibidores , Proteínas de Filamentos Intermediarios/genética , Queratina-8/metabolismo , Ratones , Proteína Homeótica Nanog , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Isoformas de Proteínas/antagonistas & inhibidores , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Factores de Transcripción SOXB1/metabolismo , Tretinoina/farmacología
7.
Transl Res ; 238: 36-48, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34332154

RESUMEN

Little is known about the mechanisms of aging on vascular beds and its relationship with tetra and di-hydrobiopterin (BH4 and BH2) levels. This observational clinical study analyzed the impact of aging on plasma and platelet biopterins, cutaneous blood flow (CBF), and coronary flow reserve (CFR) in healthy adults. The study enrolled healthy adults in 3 age groups: 18-30, 50-59, and 60-70 years (n = 25/group). Biopterins were assessed by LC-MS/MS using newly defined pre-analytical conditions limiting BH4 oxidation and improving long-term stability. CBF was measured by Laser Speckle Contrast Imaging coupled with acetylcholine-iontophoresis and CFR by adenosine stress cardiac magnetic resonance. In healthy adults, aging (60-70 years vs 18-30 years) significantly increased platelet BH2 (+75%, P = 0.033) and BH2 + BH4 (+31%, P = 0.033), and to a lesser extent plasma BH2 (+29%, P = 0.009) without affecting BH4 and BH4/BH2. Simultaneously, CBF was decreased (-23%, P = 0.004) but not CFR, CBF being inversely correlated with platelet BH2 (r = -0.42, P = 0.001) and BH2 + BH4 (r = -0.41, P = 0.002). The proportion of adults with abnormal platelet BH2 increased with age (+28% in 60-70y). These abnormal BH2 levels were significantly associated with reduced CBF and CFR (-16%, P = 0.03 and -26%, P = 0.02). In conclusion, our study showed that age-related peripheral endothelial dysfunction was associated with an increase in circulating BH2 without decreasing BH4, the effect being more marked in platelets, the most relevant blood compartment to assess biopterin bioavailability. Peripheral but not coronary vascular function is progressively impaired with aging in healthy adults. All these findings support biopterins as therapeutic targets to improve vascular function.


Asunto(s)
Envejecimiento/fisiología , Biopterinas/análogos & derivados , Endotelio Vascular/fisiopatología , Adolescente , Adulto , Anciano , Animales , Biopterinas/sangre , Plaquetas/metabolismo , Vasos Sanguíneos/fisiología , Endotelio Vascular/fisiología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Ratas Endogámicas SHR , Ratas Endogámicas WKY , Ratas Zucker , Adulto Joven
8.
Nat Commun ; 8: 14582, 2017 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-28239148

RESUMEN

Although in flies the atypical cadherin Fat is an upstream regulator of Hippo signalling, the closest mammalian homologue, Fat4, has been shown to regulate tissue polarity rather than growth. Here we show in the mouse heart that Fat4 modulates Hippo signalling to restrict growth. Fat4 mutant myocardium is thicker, with increased cardiomyocyte size and proliferation, and this is mediated by an upregulation of the transcriptional activity of Yap1, an effector of the Hippo pathway. Fat4 is not required for the canonical activation of Hippo kinases but it sequesters a partner of Yap1, Amotl1, out of the nucleus. The nuclear translocation of Amotl1 is accompanied by Yap1 to promote cardiomyocyte proliferation. We, therefore, identify Amotl1, which is not present in flies, as a mammalian intermediate for non-canonical Hippo signalling, downstream of Fat4. This work uncovers a mechanism for the restriction of heart growth at birth, a process which impedes the regenerative potential of the mammalian heart.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Cadherinas/metabolismo , Corazón/crecimiento & desarrollo , Proteínas de la Membrana/metabolismo , Fosfoproteínas/metabolismo , Proteína 1 Similar a la Angiopoyetina , Animales , Animales Recién Nacidos , Cardiomegalia/genética , Cardiomegalia/patología , Proteínas de Ciclo Celular , Proliferación Celular , Desmosomas/metabolismo , Desmosomas/ultraestructura , Regulación del Desarrollo de la Expresión Génica , Ratones , Modelos Biológicos , Unión Proteica , Ratas , Transducción de Señal , Proteínas Señalizadoras YAP
9.
Methods Cell Biol ; 127: 55-73, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25837386

RESUMEN

The primary cilium is a small sensory organelle that is required for different aspects of embryonic development, including the formation of the heart. The structure and composition of cilia have been extensively studied, so that several markers of primary cilia have now been identified. However, the role of cilia in specific cell types remains poorly understood. We describe here a series of approaches to image primary cilia in the rodent heart or in primary cultures of cells dissociated from the heart. As the cilium is a marker of cell polarity, we also provide, for quantitative image analysis of cilium orientation, tools which are generally applicable to other types of tissues.


Asunto(s)
Cilios/fisiología , Corazón/fisiología , Miocardio/citología , Miocitos Cardíacos/fisiología , Animales , Diferenciación Celular , Polaridad Celular/fisiología , Células Cultivadas , Disección , Embrión de Mamíferos/fisiología , Desarrollo Embrionario , Procesamiento de Imagen Asistido por Computador , Ratones , Miocitos Cardíacos/citología , Cultivo Primario de Células , Transducción de Señal , Coloración y Etiquetado/métodos , Fijación del Tejido/métodos
10.
Cardiovasc Res ; 98(3): 372-80, 2013 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-23436819

RESUMEN

AIMS: The expression of the sodium/calcium exchanger NCX1 increases during cardiac hypertrophy and heart failure, playing an important role in Ca(2+) extrusion. This increase is presumed to result from stress signalling induced changes in the interplay between transcriptional and post-transcriptional regulations. We aimed to determine the impact of the SRF transcription factor known to regulate the NCX1 promoter and microRNA genes, on the expression of NCX1 mRNA and protein and annexin A5 (AnxA5), a Ca(2+)-binding protein interacting with NCX1 and increased during HF. METHODS AND RESULTS: NCX1 mRNA was decreased while the protein was increased in the failing heart of the cardiomyocyte-restricted SRF knock-out mice (SRF(HKO)). The induction of NCX1 mRNA by the pro-hypertrophic drug phenylephrine observed in control mice was abolished in the SRF(HKO) though the protein was strongly increased. AnxA5 protein expression profile paralleled the expression of NCX1 protein in the SRF(HKO). MiR-1, a microRNA regulated by SRF, was decreased in the SRF(HKO) and repressed by phenylephrine. In vitro and in vivo manipulation of miR-1 levels and site-directed mutagenesis showed that NCX1 and AnxA5 mRNAs are targets of miR-1. AnxA5 overexpression slowed down Ca(2+) extrusion during caffeine application in adult rat cardiomyocytes. CONCLUSION: Our study reveals the existence of a complex regulatory loop where SRF regulates the transcription of NCX1 and miR-1, which in turn functions as a rheostat limiting the translation of NCX1 and AnxA5 proteins. The decrease of miR-1 and increase of AnxA5 appear as important modulators of NCX1 expression and activity during heart failure.


Asunto(s)
Anexina A5/metabolismo , Cardiomiopatía Dilatada/metabolismo , Insuficiencia Cardíaca/metabolismo , MicroARNs/metabolismo , Miocitos Cardíacos/metabolismo , Factor de Respuesta Sérica/metabolismo , Intercambiador de Sodio-Calcio/metabolismo , Animales , Anexina A5/genética , Cafeína/farmacología , Calcio/metabolismo , Señalización del Calcio , Cardiomiopatía Dilatada/genética , Cardiomiopatía Dilatada/fisiopatología , Línea Celular , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Genotipo , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/fisiopatología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mutación , Miocitos Cardíacos/efectos de los fármacos , Fenotipo , Fenilefrina/farmacología , ARN Mensajero/metabolismo , Ratas , Ratas Wistar , Factor de Respuesta Sérica/deficiencia , Factor de Respuesta Sérica/genética , Intercambiador de Sodio-Calcio/genética , Factores de Tiempo , Transfección
11.
Biol Aujourdhui ; 205(3): 139-46, 2011.
Artículo en Francés | MEDLINE | ID: mdl-21982403

RESUMEN

Intracellular protein filaments intermediate in size between actin filaments and microtubules are composed of a variety of tissue specific proteins. The sequence conservation of the coiled-coil alpha-helical structure responsible for polymerization into individual 10 nm filaments defines a large gene family. Intermediate filaments (IFs) include the nuclear lamins, which are universal in Metazoans, and the cytoplasmic intermediate filaments, which are more varied and form cell type specific networks in animal cells. IFs all share a common tripartite structure consisting of a highly conserved central helical rod domain and variable N-head and C-tail domains. In contrast to actin and tubulin, IFs do not require nucleoside triphosphates such as ATP or GTP for polymerization but they self assemble. According to sequences, the IFs proteins are grouped into seven classes, including five cytoplasmic, one nuclear and one sub-cortical localizations. The search for functions of IFs has led to discoveries of roles in the skin, heart, muscle, liver and brain, in premature aging and of involvement in several degenerative disorders. Mutations in IFs cause or predispose to more than 80 human tissue-specific diseases. Mouse models and gene invalidation have been extremely helpful in eliciting IF role in physiopathology. Besides mechanical role in cell plasticity and stress absorbers, IF functions are related to the capacity to interact with signaling molecules and cell kinases, controlling gene regulatory networks. The reviews herein include a historical perspective about IFs, describe how mutations affect IF structure and assembly properties in desminopathies, inclusion formation in the neurodegenerative Alexander disease, and how they induce multiple disorders in laminopathies.


Asunto(s)
Enfermedades Genéticas Congénitas/genética , Proteínas de Filamentos Intermediarios/fisiología , Animales , Modelos Animales de Enfermedad , Enfermedades Genéticas Congénitas/metabolismo , Enfermedades Genéticas Congénitas/patología , Humanos , Proteínas de Filamentos Intermediarios/química , Proteínas de Filamentos Intermediarios/deficiencia , Proteínas de Filamentos Intermediarios/genética , Filamentos Intermedios/fisiología , Filamentos Intermedios/ultraestructura , Ratones , Familia de Multigenes , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/deficiencia , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/fisiología , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Multimerización de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA