Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Rev Physiol Biochem Pharmacol ; 184: 121-157, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35266054

RESUMEN

Chitosan is a natural polysaccharide widespread in nature. It has many unique and attractive properties for the pharmaceutical field: it is biodegradable, safe, hypoallergenic, biocompatible with the body, free of toxicity, with proven anticholesterolemic, antibacterial, and antimycotic action. In this review we highlighted the physical, chemical, mechanical, mucoadhesive, etc. properties of chitosan to be taken into account when obtaining various pharmaceutical forms. The methods by which the pharmaceutical forms based on chitosan are obtained are very extensive, and in this study only the most common ones were presented.


Asunto(s)
Quitosano , Humanos , Quitosano/química , Preparaciones Farmacéuticas
2.
Molecules ; 29(7)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38611857

RESUMEN

In an actual economic context, the demand for scandium has grown due to its applications in top technologies. However, further development of new technologies will lead to an increase in the market for Sc related to such technologies. The present study aims to improve and upgrade existing technology in terms of efficient scandium recovery, proposing a new material with selective adsorptive properties for scandium recovery. To highlight the impregnation of Amberlite XAD7HP resin with tri-n-octylphosphine oxide extractant by the solvent-impregnated resin method, the obtained adsorbent material was characterized by physico-chemical techniques. Further, the specific surface of the adsorbent and the zero-point charge of the adsorbent surface have been determined. Different parameters, such as initial concentration, adsorbent amount, contact time, or temperature, have been studied. The initial pH effect was investigated when a maximum adsorption capacity of 31.84 mg g-1 was obtained at pH > 3, using 0.1 g of adsorbent and a contact time of 90 min and 298 K. An attempt was made to discuss and provide a clear representation of the studied adsorption process, proposing a specific mechanism for Sc(III) recovery from aqueous solutions through kinetic, thermodynamic, and equilibrium studies. Adsorption/desorption studies reveal that the prepared adsorbent material can be reused five times.

3.
Int J Mol Sci ; 24(17)2023 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-37685981

RESUMEN

Bismuth oxides were synthesized from bismuth carbonate using the sol-gel method. Studies have described the formation of Bi2O3, as a precursor of HNO3 dissolution, and intermediate oxides, such as BixOy when using H2SO4 and H3PO4. The average size of the crystallite calculated from Scherrer's formula ranged from 9 to 19 nm, according to X-ray diffraction. The FTIR analysis showed the presence of specific Bi2O3 bands when using HNO3 and of crystalline phases of "bismuth oxide sulphate" when using H2SO4 and "bismuth phosphate" when using H3PO4. The TG curves showed major mass losses and specific thermal effects, delimited in four temperature zones for materials synthesized with HNO3 (with loss of mass between 24% and 50%) and H2SO4 (with loss of mass between 45% and 76%), and in three temperature zones for materials synthesized with H3PO4 (with loss of mass between 13% and 43%). Further, the thermal stability indicates that materials have been improved by the addition of a polymer or polymer and carbon. Confocal laser scanning microscopy showed decreased roughness in the series, [BixOy]N > [BixOy-6% PVA]N > [BixOy-C-6% PVA]N, and increased roughness for materials [BixOy]S, [BixOy-6% PVA]S, [BixOy-C-6% PVA]S, [BixOy]P, [BixOy-6% PVA]P and [BixOy-C-6% PVA]P. The morphological analysis (electronic scanning microscopy) of the synthesized materials showed a wide variety of forms: overlapping nanoplates ([BixOy]N or [BixOy]S), clusters of angular forms ([BixOy-6% PVA]N), pillars ([BixOy-6% PVA]S-Au), needle particles ([BixOy-Au], [BixOy-6% PVA]S-Au, [BixOy-C-6% PVA]S-Au), spherical particles ([BixOy-C-6% PVA]P-Pt), 2D plates ([BixOy]P-Pt) and 3D nanometric plates ([BixOy-C-6% PVA]S-Au). For materials obtained in the first synthesis stage, antimicrobial activity increased in the series [BixOy]N > [BixOy]S > [BixOy]P. For materials synthesized in the second synthesis stage, when polymer (polyvinyl alcohol, PVA) was added, maximum antimicrobial activity, regardless of the microbial species tested, was present in the material [BixOy-6% PVA]S. For the materials synthesized in the third stage, to which graphite and 6% PVA were added, the best antimicrobial activity was in the material [BixOy-C-6% PVA]P. Materials synthesized and doped with metal ions (gold or platinum) showed significant antimicrobial activity for the tested microbial species.


Asunto(s)
Bismuto , Nanoestructuras , Bismuto/farmacología , Oro , Platino (Metal) , Óxidos/farmacología , Polímeros
4.
Int J Mol Sci ; 23(20)2022 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-36292962

RESUMEN

From the multitude of materials currently available on the market that can be used in the development of microparticles, sodium alginate has become one of the most studied natural anionic polymers that can be included in controlled-release pharmaceutical systems alongside other polymers due to its low cost, low toxicity, biocompatibility, biodegradability and gelatinous die-forming capacity in the presence of Ca2+ ions. In this review, we have shown that through coacervation, the particulate systems for the dispensing of drugs consisting of natural polymers are nontoxic, allowing the repeated administration of medicinal substances and the protection of better the medicinal substances from degradation, which can increase the capture capacity of the drug and extend its release from the pharmaceutical form.


Asunto(s)
Alginatos , Polímeros , Preparaciones de Acción Retardada , Gelatina , Sistemas de Liberación de Medicamentos , Ácidos Hexurónicos
5.
Int J Mol Sci ; 23(17)2022 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-36077540

RESUMEN

In this paper, we studied the scandium adsorption from aqueous solutions on the surface of low-temperature-activated alumina products (GDAH). The GDAH samples are industrially manufactured, coming from the Bayer production cycle of the Sierra Leone bauxite as aluminium hydroxide, and further, by drying, milling, classifying and thermally treating up to dehydroxilated alumina products at low temperature. All experiments related to hydroxide aluminium activation were conducted at temperature values of 260, 300 and 400 °C on samples having the following particle sizes: <10 µm, 20 µm, <45 µm and <150 µm, respectively. The low-temperature-activated alumina products were characterised, and the results were published in our previous papers. In this paper, we studied the scandium adsorption process on the above materials and related thermodynamic and kinetic studies.


Asunto(s)
Óxido de Aluminio , Escandio , Adsorción , Concentración de Iones de Hidrógeno , Cinética , Temperatura , Agua
6.
Int J Mol Sci ; 24(1)2022 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-36613702

RESUMEN

The aim of this paper is to provide a simple and efficient photoassisted approach to synthesize silver nanoparticles, and to elucidate the role of the key factors (synthesis parameters, such as the concentration of TSC, irradiation time, and UV intensity) that play a major role in the photochemical synthesis of silver nanoparticles using TSC, both as a reducing and stabilizing agent. Concomitantly, we aim to provide an easy way to evaluate the particle size based on Mie theory. One of the key advantages of this method is that the synthesis can be "activated" whenever or wherever silver nanoparticles are needed, by premixing the reactants and irradiating the final solution with UV radiation. UV irradiance was determined by using Keitz's theory. This argument has been verified by premixing the reagents and deposited them in an enclosed space (away from sunlight) at 25 °C, then checking them for three days. Nothing happened, unless the sample was directly irradiated by UV light. Further, obtained materials were monitored for 390 days and characterized using scanning electron microscopy, UV-VIS, and transmission electron microscopy.


Asunto(s)
Nanopartículas del Metal , Nanopartículas del Metal/química , Citrato de Sodio , Plata/química , Microscopía Electrónica de Transmisión , Rayos Ultravioleta
7.
Int J Mol Sci ; 22(14)2021 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-34299068

RESUMEN

The biomedical and therapeutic importance of chitosan and chitosan derivatives is the subject of interdisciplinary research. In this analysis, we intended to consolidate some of the recent discoveries regarding the potential of chitosan and its derivatives to be used for biomedical and other purposes. Why chitosan? Because chitosan is a natural biopolymer that can be obtained from one of the most abundant polysaccharides in nature, which is chitin. Compared to other biopolymers, chitosan presents some advantages, such as accessibility, biocompatibility, biodegradability, and no toxicity, expressing significant antibacterial potential. In addition, through chemical processes, a high number of chitosan derivatives can be obtained with many possibilities for use. The presence of several types of functional groups in the structure of the polymer and the fact that it has cationic properties are determinant for the increased reactive properties of chitosan. We analyzed the intrinsic properties of chitosan in relation to its source: the molecular mass, the degree of deacetylation, and polymerization. We also studied the most important extrinsic factors responsible for different properties of chitosan, such as the type of bacteria on which chitosan is active. In addition, some chitosan derivatives obtained by functionalization and some complexes formed by chitosan with various metallic ions were studied. The present research can be extended in order to analyze many other factors than those mentioned. Further in this paper were discussed the most important factors that influence the antibacterial effect of chitosan and its derivatives. The aim was to demonstrate that the bactericidal effect of chitosan depends on a number of very complex factors, their knowledge being essential to explain the role of each of them for the bactericidal activity of this biopolymer.


Asunto(s)
Antibacterianos/química , Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Biopolímeros/química , Quitosano/química , Quitosano/farmacología
8.
Int J Mol Sci ; 22(19)2021 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-34639061

RESUMEN

The study of new useful, efficient and selective structures for the palladium ions' recovery has led to the development of a new series of macromolecules. Thus, this study presents a comparative behavior of two crown benzene ethers that modify the magnesium silicate surface used as adsorbent for palladium. These crown ethers are dibenzo18-crown-6 (DB18C6) and dibenzo 30-crown-10 (DB30C10). The obtained materials were characterized by scanning electron microscope (SEM), energy-dispersive X-ray spectroscopy (EDX) and Fourier-transform infrared spectroscopy (FT-IR). The specific surface area (BET) and point of zero charge (PZC) of the two materials were determined. The palladium ions' recovery from synthetic aqueous solutions studies aimed to establish the adsorption mechanism. For this desideratum, the kinetic, equilibrium and thermodynamic studies show that MgSiO3-DB30C10 have a higher adsorption capacity (35.68 mg g-1) compared to MgSiO3-DB18C6 (21.65 mg g-1). Thermodynamic studies highlight that the adsorption of Pd(II) on the two studied materials are spontaneous and endothermic processes. The positive values of the entropy (ΔS0) suggest that the studied adsorption processes show a higher disorder at the liquid/solid interface. Desorption studies were also performed, and it was found that the degree of desorption was 98.3%.


Asunto(s)
Éteres Corona/química , Silicatos de Magnesio/química , Paladio/química , Adsorción , Concentración de Iones de Hidrógeno , Cinética , Espectroscopía Infrarroja por Transformada de Fourier , Temperatura , Termodinámica
9.
J Environ Manage ; 298: 113483, 2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34391107

RESUMEN

Ever-growing demands for energy, the unsustainability of fossil fuel due to its scarcity and massive impact on global economies and the environment, have encouraged the research on alternative power sources to work upon for the governments, companies, and scientists across the world. Enzymatic biofuel cells (eBFCs) is one category of fuel cell that can harvest energy from biological moieties and has the future to be used as an alternative source of energy. The aim of this review is to summarize the background and state-of-the-art in the field of eBFCs. This review article will be very beneficial for a wide audience including students and new researchers in the field. A part of the paper summarized the challenges in the preparation of anode and cathode and the involvement of nanomaterials and conducting polymers to construct the effective bioelectrodes. It will provide an insight for the researchers working in this challenging field. Furthermore, various applications of eBFCs in implantable power devices, tiny electronic gadgets, and self powered biosensors are reported. This review article explains the development in the area of eBFCs for several years from its origin to growth systematically. It reveals the strategies that have been taken for the improvements required for the better electrochemical performance and operational stability of eBFCs. It also mentions the challenges in this field that will require proper attention so that the eBFCs can be utilized commercially in the future. The review article is written and structurized in a way so that it can provide a decent background of eBFCs to its reader. It will definitely help in enhancing the interest of reader in eBFCs.


Asunto(s)
Fuentes de Energía Bioeléctrica , Técnicas Biosensibles , Nanoestructuras , Electrodos , Humanos , Polímeros
10.
Molecules ; 25(16)2020 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-32823592

RESUMEN

Platinum is a precious metal with many applications, such as: catalytic converters, laboratory equipment, electrical contacts and electrodes, digital thermometers, dentistry, and jewellery. Due to its broad usage, it is essential to recover it from waste solutions resulted out of different technological processes in which it is used. Over the years, several recovery techniques were developed, adsorption being one of the simplest, effective and economical method used for platinum recovery. In the present paper a new adsorbent material (XAD7-DB30C10) for Pt (IV) recovery was used. Produced adsorbent material was characterized by X-ray dispersion (EDX), scanning electron microscopy (SEM) analysis, Fourier Transform Infrared Spectroscopy and Brunauer-Emmett-Teller (BET) surface area analysis. Adsorption isotherms, kinetic models, thermodynamic parameters and adsorption mechanism are presented in this paper. Experimental data were fitted using three non-linear adsorption isotherms: Langmuir, Freundlich and Sips, being better fitted by Sips adsorption isotherm. Obtained kinetic data were correlated well with the pseudo-second-order kinetic model, indicating that the chemical sorption was the rate-limiting step. Thermodynamic parameters (ΔG°, ΔH°, ΔS°) showed that the adsorption process was endothermic and spontaneous. After adsorption, metallic platinum was recovered from the exhausted adsorbent material by thermal treatment. Adsorption process optimisation by design of experiments was also performed, using as input obtained experimental data, and taking into account that initial platinum concentration and contact time have a significant effect on the adsorption capacity. From the optimisation process, it has been found that the maximum adsorption capacity is obtained at the maximum variation domains of the factors. By optimizing the process, a maximum adsorption capacity of 15.03 mg g-1 was achieved at a contact time of 190 min, initial concentration of 141.06 mg L-1 and the temperature of 45 °C.


Asunto(s)
Éteres Corona/química , Platino (Metal)/química , Platino (Metal)/aislamiento & purificación , Resinas Sintéticas/química , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/aislamiento & purificación , Purificación del Agua/métodos , Adsorción , Concentración de Iones de Hidrógeno , Cinética , Soluciones , Temperatura
11.
Int J Mol Sci ; 20(8)2019 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-31013686

RESUMEN

Neuropsychiatric disorders are induced by various risk factors, including direct exposure to environmental chemicals. Arsenic exposure induces neurodegeneration and severe psychiatric disorders, but the molecular mechanisms by which brain damage is induced are not yet elucidated. Our aim is to better understand the molecular mechanisms of arsenic toxicity in the brain and to elucidate possible ways to prevent arsenic neurotoxicity, by reviewing significant experimental, bioinformatics, and cheminformatics studies. Brain damage induced by arsenic exposure is discussed taking in account: the correlation between neuropsychiatric disorders and the presence of arsenic and its derivatives in the brain; possible molecular mechanisms by which arsenic induces disturbances of cognitive and behavioral human functions; and arsenic influence during psychiatric treatments. Additionally, we present bioinformatics and cheminformatics tools used for studying brain toxicity of arsenic and its derivatives, new nanoparticles used as arsenic delivery systems into the human body, and experimental ways to prevent arsenic contamination by its removal from water. The main aim of the present paper is to correlate bioinformatics, cheminformatics, and experimental information on the molecular mechanism of cerebral damage induced by exposure to arsenic, and to elucidate more efficient methods used to reduce its toxicity in real groundwater.


Asunto(s)
Arsénico/efectos adversos , Biología Computacional , Exposición a Riesgos Ambientales/efectos adversos , Monitoreo del Ambiente , Trastornos Mentales/etiología , Trastornos Mentales/prevención & control , Arsénico/química , Arsénico/toxicidad , Biomarcadores , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/fisiopatología , Cognición/efectos de los fármacos , Humanos , Trastornos Mentales/epidemiología , Trastornos Mentales/metabolismo , Relación Estructura-Actividad , Contaminantes Químicos del Agua/efectos adversos
12.
J Environ Manage ; 204(Pt 3): 839-844, 2017 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-28148453

RESUMEN

The rare metals' potential to pollute air, water, soil, and especially groundwater has received lot of attention recently. One of the most common rare earth group elements, lanthanum, is used in many industrial branches, and due to its toxicity, it needs to be eliminated from all residual aqueous solutions. The goal of this study was to evaluate the control of the adsorption process for lanthanum removal from aqueous solutions, using cellulose, a known biomaterial with high adsorbent properties, cheap, and environment friendly. The cellulose was chemically modified by functionalization with sodium ß-glycerophosphate. The experimental results obtained after factorial design indicate optimum adsorption parameters as pH 6, contact time 60 min, and temperature 298 K, when the equilibrium concentration of lanthanum was 250 mg L-1, and the experimental adsorption capacity obtained was 31.58 mg g-1. Further refinement of the optimization of the adsorption process by response surface design indicates that at pH 6 and the initial concentration of 256 mg L-1, the adsorption capacity has maximum values between 30.87 and 36.73 mg g-1.


Asunto(s)
Materiales Biocompatibles , Lantano/química , Contaminantes Químicos del Agua/química , Adsorción , Concentración de Iones de Hidrógeno , Cinética , Soluciones , Temperatura , Purificación del Agua
13.
Polymers (Basel) ; 16(17)2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39274145

RESUMEN

The aim of this study was to develop new materials with adsorbent properties that can be used for the adsorption recovery of Au(III) from aqueous solutions. To achieve this result, it is necessary to obtain inexpensive adsorbent materials in a granular form. Concomitantly, these materials must have a high adsorption capacity and selectivity. Other desired properties of these materials include a higher physical resistance, insolubility in water, and materials that can be regenerated or reused. Among the methods applied for the separation, purification, and preconcentration of platinum-group metal ions, adsorption is recognised as one of the most promising methods because of its simplicity, high efficiency, and wide availability. The studies were carried out using three supports: cellulose (CE), chitosan (Chi), and diatomea earth (Diat). These supports were functionalised by impregnation with extractants, using the ultrasound method. The extractants are environmentally friendly and relatively cheap amino acids, which contain in their structure pendant groups with nitrogen and sulphur heteroatoms (aspartic acid-Asp, l-glutamic acid-Glu, valine-Val, DL-cysteine-Cys, or serine-Ser). After preliminary testing from 75 synthesised materials, CE-Cys was chosen for the further recovery of Au(III) ions from aqueous solutions. To highlight the morphology and the functionalisation of the material, we physicochemically characterised the obtained material. Therefore, the analysis of the specific surface and porosity showed that the CE-Cys material has a specific surface of 4.6 m2/g, with a porosity of about 3 nm. The FT-IR analysis showed the presence, at a wavelength of 3340 cm-1, of the specific NH bond vibration for cysteine. At the same time, pHpZc was determined to be 2.8. The kinetic, thermodynamic, and equilibrium studies showed that the pseudo-second-order kinetic model best describes the adsorption process of Au(III) ions on the CE-Cys material. A maximum adsorption capacity of 12.18 mg per gram of the adsorbent material was achieved. It was established that the CE-Cys material can be reused five times with a good recovery degree.

14.
Polymers (Basel) ; 16(6)2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38543442

RESUMEN

Given the ever-increasing demand for gallium(III) as a crucial precursor in the fabrication of advanced materials, there arises an imperative to devise efficient recovery processes from primary and secondary sources. In the present investigation, the retrieval of gallium(III) from aqueous solutions through the mechanism of adsorption was investigated. Materials with superior adsorbent properties play an important role in the dynamics of the adsorption process. To enhance these properties, select materials, such as Amberlite-type polymeric resins, are amenable to functionalization through impregnation with extractants featuring specialized active groups, designed for the selective recovery of metal ions-specifically, Ga(III). The impregnation method employed in this study is the Solvent-Impregnated Resin (SIR) method, utilizing the amino acid DL-valine as the extractant. The new material was characterized through Scanning Electron Microscopy (SEM), Elemental Analysis via X-ray energy-dispersive spectroscopy (EDX), and Fourier transform infrared spectroscopy (FTIR) to elucidate the presence of the extractant on the resin's surface. Concurrently, the material's pHPZC was determined. The adsorptive prowess of the synthesized material was investigated through kinetic, thermodynamic, and equilibrium studies. The influence of specific parameters in the adsorption process-namely, pH, contact time, temperature, and Ga(III) initial concentration-on the maximal adsorption capacity was determined. The optimal adsorption conditions were established using the Taguchi method.

15.
Toxics ; 12(6)2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38922085

RESUMEN

The need to develop advanced wastewater treatment techniques and their use has become a priority, the main goal being the efficient removal of pollutants, especially those of organic origin. This study presents the photo-degradation of a pharmaceutical wastewater containing Kabi cytarabine, using ultraviolet (UV) radiation, and a synthesized catalyst, a composite based on bismuth and iron oxides (BFO). The size of the bandgap was determined by UV spectroscopy, having a value of 2.27 eV. The specific surface was determined using the BET method, having a value of 0.7 m2 g-1. The material studied for the photo-degradation of cytarabine presents a remarkable photo-degradation efficiency of 97.9% for an initial concentration 0f 10 mg/L cytarabine Kabi when 0.15 g of material was used, during 120 min of interaction with UV radiation at 3 cm from the irradiation source. The material withstands five photo-degradation cycles with good results. At the same time, through this study, it was possible to establish that pyrimidine derivatives could be able to combat infections caused by Escherichia coli and Candida parapsilosis.

16.
Artículo en Inglés | MEDLINE | ID: mdl-24046654

RESUMEN

In the title compound, C22H27BrO3, the cyclo-hexane ring adopts a chair conformation. The dihedral angle between the benzene rings is 41.9 (4)°. In the crystal, mol-ecules are linked by O-H⋯O and C-H⋯O hydrogen bonds, forming a three-dimensional network. In addition, π-π stacking inter-actions [centroid-centroid distance = 3.953 (6) Å] between the benzene rings of the meth-oxy-benzene groups occur.

17.
Toxics ; 11(10)2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37888699

RESUMEN

The remediation of arsenic contamination in potable water is an important and urgent concern, necessitating immediate attention. With this objective in mind, the present study investigated arsenic removal from water using batch adsorption and fixed-bed column techniques. The material employed in this study was a waste product derived from the treatment of groundwater water for potable purposes, having a substantial iron composition. The material's properties were characterized using scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and Fourier-transformed infrared spectroscopy (FT-IR). The point of zero charge (pHPZC) was measured, and the pore size and specific surface area were determined using the BET method. Under static conditions, kinetic, thermodynamic, and equilibrium studies were carried out to explore the influencing factors on the adsorption process, namely the pH, contact time, temperature, and initial arsenic concentration in the solution. It was found that the adsorption process is spontaneous, endothermic, and of a physical nature. In the batch adsorption studies, the maximum removal percentage was 80.4% after 90 min, and in a dynamic regime in the fixed-bed column, the efficiency was 99.99% at a sludge:sand = 1:1 ratio for 380 min for a volume of water with arsenic of ~3000 mL. The kinetics of the adsorption process conformed to a pseudo-second-order model. In terms of the equilibrium studies, the Sips model yielded the most accurate representation of the data, revealing a maximum equilibrium capacity of 70.1 mg As(V)/g sludge. For the dynamic regime, the experimental data were fitted using the Bohart-Adams, Thomas, and Clark models, in order to establish the mechanism of the process. Additionally, desorption studies were conducted, serving as an essential step in validating the practical applicability of the adsorption process, specifically in relation to the reutilization of the adsorbent material.

18.
Materials (Basel) ; 16(2)2023 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-36676564

RESUMEN

Five new complexes with metal cations (Mn2+, Fe3+, Co2+, Ni2+, and Cu2+) of monolacunary Keggin monovanado-deca-tungstophosphate, K8[PVW10O39]·15H2O, have been synthesised. The molar ratio of the combination between metal cations and K8[PVW10O39]·15H2O has been established to be 1:1, and its general molecular formulas were found to be: Kn[MPVW10O39(H2O)]·xH2O (n = 5 for M = Fe3+ and n = 6 for M = Mn2+, Co2+, Ni2+, and Cu2+). Optimal conditions for complexes' synthesis (pH, temperature, and reaction time) have been determined. The characterisation of K8[PVW10O39]·15H2O and of its compounds Kn[MPVW10O39(H2O)]·xH2O have been performed using AAS, TG-DTA-DTG, UV-VIS, IR, Raman, and powder XRD methods. In UV spectra, two maximums of absorption were obtained, at 200 and 250 nm, characteristic of Keggin polycondensate compounds. The coordination of cations Ni2+, Co2+, and Cu2+ through oxygen atoms from K8[PVW10O39]·15H2O in an octahedron system has been reflected with VIS spectroscopy. All these methods have proved the compositions and structures of K8[PVW10O39]·15H2O and Kn[MPVW10O39(H2O)]·xH2O, their similarity with other vanadotungstophosphates, and their achievements in the Keggin class. Additionally, all analysis methods have shown an increase in the degree of structural symmetry and the thermal stability of a polyoxoanion complex after attaching metal cations compared to the monolacunary, K8[PVW10O39]·15H2O.

19.
Gels ; 9(6)2023 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-37367167

RESUMEN

In recent years, during industrial development, the expanding discharge of harmful metallic ions from different industrial wastes (such as arsenic, barium, cadmium, chromium, copper, lead, mercury, nickel, selenium, silver, or zinc) into different water bodies has caused serious concern, with one of the problematic elements being represented by selenium (Se) ions. Selenium represents an essential microelement for human life and plays a vital role in human metabolism. In the human body, this element acts as a powerful antioxidant, being able to reduce the risk of the development of some cancers. Selenium is distributed in the environment in the form of selenate (SeO42-) and selenite (SeO32-), which are the result of natural/anthropogenic activities. Experimental data proved that both forms present some toxicity. In this context, in the last decade, only several studies regarding selenium's removal from aqueous solutions have been conducted. Therefore, in the present study, we aim to use the sol-gel synthesis method to prepare a nanocomposite adsorbent material starting from sodium fluoride, silica, and iron oxide matrices (SiO2/Fe(acac)3/NaF), and to further test it for selenite adsorption. After preparation, the adsorbent material was characterized by scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). The mechanism associated with the selenium adsorption process has been established based on kinetic, thermodynamic, and equilibrium studies. Pseudo second order is the kinetic model that best describes the obtained experimental data. Also, from the intraparticle diffusion study, it was observed that with increasing temperature the value of the diffusion constant, Kdiff, also increases. Sips isotherm was found to best describe the experimental data obtained, the maximum adsorption capacity being ~6.00 mg Se(IV) per g of adsorbent material. From a thermodynamic point of view, parameters such as ΔG0, ΔH0, and ΔS0 were evaluated, proving that the process studied is a physical one.

20.
Materials (Basel) ; 16(21)2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37959595

RESUMEN

Industry represents a fundamental component of modern society, with the generation of massive amounts of industrial waste being the inevitable result of development activities in recent years. Red mud is an industrial waste generated during alumina production using the Bayer process of refining bauxite ore. It is a highly alkaline waste due to the incomplete removal of NaOH. There are several opinions in both the literature and legislation on the hazards of red mud. According to European and national legislation, this mud is not on the list of hazardous wastes; however, if the list of criteria are taken into account, it can be considered as hazardous. The complex processing of red mud is cost-effective because it contains elements such as iron, manganese, sodium, calcium, magnesium, zinc, strontium, lead, copper, cadmium, bismuth, barium and rare earths, especially scandium. Therefore, the selection of an extraction method depends on the form in which the element is present in solution. Extraction is one of the prospective separation and concentration methods. In this study, we evaluated the kinetic modelling of the solid-liquid acid extraction process of predominantly scandium as well as other elements present in red mud. Therefore, three acids (HCl, HNO3 and H2SO4) at different concentrations (10, 20 and 30%) were targeted for the extraction of Sc(III) from solid red mud. Specific parameters of the kinetics of the extraction process were studied, namely the solid:liquid ratio, initial acid concentration, contact time and temperature. The extraction kinetics of Sc(III) with acids was evaluated using first- and second-order kinetic models, involving kinetic parameters, rate constants, saturation concentration and activation energy. The second-order kinetic model was able to describe the mechanism of Sc(III) extraction from red mud. In addition, this study provides an overview on the mechanism of mass transfer involved in the acid extraction process of Sc(III), thereby enabling the design, optimization and control of large-scale processes for red mud recovery.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA