Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
J Neurosci ; 32(11): 3736-47, 2012 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-22423094

RESUMEN

The dorsoventral and developmental gradients of entorhinal layer II cell grid properties correlate with their resonance properties and with their hyperpolarization-activated cyclic nucleotide-gated (HCN) ion channel current characteristics. We investigated whether such correlation existed in rat hippocampal CA1 pyramidal cells, where place fields also show spatial and temporal gradients. Resonance was absent during the first postnatal week, and emerged during the second week. Resonance was stronger in dorsal than ventral cells, in accord with HCN current properties. Resonance responded to cAMP in ventral but not in dorsal cells. The dorsoventral distribution of HCN1 and HCN2 subunits and of the auxiliary protein tetratricopeptide repeat-containing Rab8b-interacting protein (TRIP8b) could account for these differences between dorsal and ventral cells. The analogous distribution of the intrinsic properties of entorhinal stellate and hippocampal cells suggests the existence of general rules of organization among structures that process complementary features of the environment.


Asunto(s)
Región CA1 Hipocampal/citología , Región CA1 Hipocampal/crecimiento & desarrollo , Células Piramidales/citología , Células Piramidales/crecimiento & desarrollo , Animales , Animales Recién Nacidos , Masculino , Técnicas de Cultivo de Órganos , Ratas , Ratas Wistar
2.
J Biol Chem ; 287(21): 17656-17661, 2012 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-22511771

RESUMEN

The dorsal and ventral regions of the hippocampus perform different functions. Whether the integrative properties of hippocampal cells reflect this heterogeneity is unknown. We focused on dendrites where most synaptic input integration takes place. We report enhanced backpropagation and theta resonance and decreased summation of synaptic inputs in ventral versus dorsal CA1 pyramidal cell distal dendrites. Transcriptional Kv4.2 down-regulation and post-transcriptional hyperpolarization-activated cyclic AMP-gated channel (HCN1/2) up-regulation may underlie these differences, respectively. Our results reveal differential dendritic integrative properties along the dorso-ventral axis, reflecting diverse computational needs.


Asunto(s)
Canales Catiónicos Regulados por Nucleótidos Cíclicos/biosíntesis , Dendritas/metabolismo , Regulación hacia Abajo/fisiología , Canales Iónicos/biosíntesis , Proteínas del Tejido Nervioso/biosíntesis , Canales de Potasio/biosíntesis , Células Piramidales/metabolismo , Canales de Potasio Shal/biosíntesis , Regulación hacia Arriba/fisiología , Animales , Dendritas/genética , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización , Especificidad de Órganos , Células Piramidales/citología , Ratas , Transcripción Genética/fisiología
3.
Hippocampus ; 22(3): 477-93, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21240918

RESUMEN

We used a pathophysiological model of temporal lobe epilepsy induced by pilocarpine in adult rats in order to assess the in vivo role of drebrin A (DA), one of the major regulators of F-actin. This model displays a dynamic reorganization of the glutamatergic network including neo-spinogenesis, morphogenesis, and neo-synaptogenesis associated with an aberrant sprouting of granule cell axons in the dentate gyrus (DG). This reactive plasticity contributes in dentate granule-cell hyperexcitability that could lead to the emergence of recurrent spontaneous seizures. We investigated the hippocampal DA expression changes in pilocarpine animals using immunohistochemical, Western blot, and in situ hybridization analyses. We showed that DA immunoreactivity was decreased in the inner molecular layer (IML) and in the hilus (H) of the DG, at latent stage, when spinogenesis and morphogenesis occur. Western blot analysis confirmed these overall hippocampal decreases of DA protein expression. At chronic stage, when newly formed glutamatergic synapses are being established, the levels of immunolabeling for DA in the H and the IML were similar to control rats. This recovery is likely due to the increase of DA mRNA in perikarya of hilar and granule cells. Interestingly, our data showed that the changes pattern of labeling for Bassoon, a specific marker for presynaptic active zone, in the IML of pilocarpine-treated animals paralleled those found for DA at all time points examined. Furthermore, our double and triple immunofluorescence studies showed that the recovery in DA levels in the IML occurred within the dendritic spines involved in glutamatergic active synapses of presumed granule cells. Altogether, our results indicate that in vivo DA is not critical for spinogenesis and morphogenesis but instead is consistent with an involvement in synaptic structural integrity, stabilization, and function. Thus, DA appears as a novel modulator of reactive synaptic plasticity associated with epilepsy.


Asunto(s)
Espinas Dendríticas/metabolismo , Hipocampo/metabolismo , Neuronas/metabolismo , Neuropéptidos/metabolismo , Convulsiones/metabolismo , Sinapsis/metabolismo , Animales , Hipocampo/fisiopatología , Masculino , Neuropéptidos/genética , Pilocarpina/envenenamiento , Ratas , Ratas Wistar , Convulsiones/inducido químicamente , Convulsiones/genética , Convulsiones/fisiopatología , Sinapsis/genética
4.
Ann Neurol ; 70(3): 454-64, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21905079

RESUMEN

OBJECTIVE: Enduring, abnormal expression and function of the ion channel hyperpolarization-activated cyclic adenosine monophosphate gated channel type 1 (HCN1) occurs in temporal lobe epilepsy (TLE). We examined the underlying mechanisms, and investigated whether interfering with these mechanisms could modify disease course. METHODS: Experimental TLE was provoked by kainic acid-induced status epilepticus (SE). HCN1 channel repression was examined at mRNA, protein, and functional levels. Chromatin immunoprecipitation was employed to identify the transcriptional mechanism of repressed HCN1 expression, and the basis for their endurance. Physical interaction of the repressor, NRSF, was abolished using decoy oligodeoxynucleotides (ODNs). Video/electroencephalographic recordings were performed to assess the onset and initial pattern of spontaneous seizures. RESULTS: Levels of NRSF and its physical binding to the Hcn1 gene were augmented after SE, resulting in repression of HCN1 expression and HCN1-mediated currents (I(h) ), and reduced I(h) -dependent resonance in hippocampal CA1 pyramidal cell dendrites. Chromatin changes typical of enduring, epigenetic gene repression were apparent at the Hcn1 gene within a week after SE. Administration of decoy ODNs comprising the NRSF DNA-binding sequence (neuron restrictive silencer element [NRSE]), in vitro and in vivo, reduced NRSF binding to Hcn1, prevented its repression, and restored I(h) function. In vivo, decoy NRSE ODN treatment restored theta rhythm and altered the initial pattern of spontaneous seizures. INTERPRETATION: Acquired HCN1 channelopathy derives from NRSF-mediated transcriptional repression that endures via chromatin modification and may provide insight into the mechanisms of a number of channelopathies that coexist with, and may contribute to, the conversion of a normal brain into an epileptic one.


Asunto(s)
Canalopatías/fisiopatología , Canales Catiónicos Regulados por Nucleótidos Cíclicos/fisiología , Epilepsia del Lóbulo Temporal/fisiopatología , Nucleótidos Cíclicos/metabolismo , Canales de Potasio/fisiología , Proteínas Represoras/fisiología , Animales , Región CA1 Hipocampal/patología , Canalopatías/genética , Canalopatías/metabolismo , Cromatina/patología , Canales Catiónicos Regulados por Nucleótidos Cíclicos/genética , Dendritas/patología , Epilepsia del Lóbulo Temporal/inducido químicamente , Epilepsia del Lóbulo Temporal/metabolismo , Agonistas de Aminoácidos Excitadores , Expresión Génica/genética , Expresión Génica/fisiología , Hipocampo/patología , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización , Activación del Canal Iónico/fisiología , Ácido Kaínico , Masculino , Canales de Potasio/genética , Ratas , Ratas Wistar , Proteínas Represoras/antagonistas & inhibidores , Estado Epiléptico/inducido químicamente , Estado Epiléptico/metabolismo , Estado Epiléptico/fisiopatología
5.
Mol Neurobiol ; 59(8): 4953-4965, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35665897

RESUMEN

Somatostatin cells are frequently described as a major population of GABAergic neurons in the cerebral cortex. In this study, we performed a comprehensive analysis of their molecular expression, morphological features, and laminar distribution. We provided a detailed description of somatostatin neurons in the human prefrontal cortex, including their proportion in the total neuron population, laminar distribution, neurotransmitter phenotype, as well as their molecular and morphological characteristics using immunofluorescence and RNAscope in situ hybridization. We found that somatostatin neurons comprise around 7% of neocortical neurons in the human Brodmann areas 9 and 14r, without significant difference between the two regions. Somatostatin cells were NeuN positive and synthesized vesicular GABA transporter and glutamate decarboxylase 1 and 2, confirming their neuronal nature and GABAergic phenotype. Somatostatin cells in the upper cortical layers were small, had a high expression of somatostatin mRNA, a relatively low expression of somatostatin peptide, and co-expressed calbindin. In the lower cortical layers, somatostatin cells were larger with complex somato-dendritic morphology, typically showed a lower expression of somatostatin mRNA and a high expression of somatostatin peptide, and co-expressed neuronal nitric oxide synthase (nNOS) and neuropeptide Y (NPY), but not calbindin. Somatostatin neurons in the white matter co-expressed MAP2. Based on their somato-dendritic morphology, cortical somatostatin neurons could be classified into at least five subtypes. The somatostatin neurons of the human prefrontal cortex show remarkable morphological and molecular complexity, which implies that they have equally complex and distinct functions in the human brain.


Asunto(s)
Neuronas GABAérgicas , Somatostatina , Calbindinas/metabolismo , Corteza Cerebral/metabolismo , Neuronas GABAérgicas/metabolismo , Humanos , Neuropéptido Y/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Somatostatina/metabolismo
6.
Exp Neurol ; 335: 113512, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33098872

RESUMEN

α-actinin-2 (α-actn-2) is an F-actin-crosslinking protein, localized in dendritic spines. In vitro studies suggested that it is involved in spinogenesis, morphogenesis, actin organization, cell migration and anchoring of the NR1 subunit of the N-methyl-D-aspartate (NMDA) receptors in dendritic spines. However, little is known regarding its function in vivo. We examined the levels of α-actn-2 expression within the dentate gyrus (DG) during the development of chronic limbic seizures (epileptogenesis) induced by pilocarpine in rats. In this model, plasticity of the DG glutamatergic granule cells including spine loss, spinogenesis, morphogenesis, neo-synaptogenesis, aberrant migration, and alterations of NMDA receptors have been well characterized. We showed that α-actn-2 immunolabeling was reduced in the inner molecular layer at 1-2 weeks post-status epilepticus (SE), when granule cell spinogenesis and morphogenesis occur. This low level persisted at the chronic stage when new functional synapses are established. This decreased of α-actn-2 protein is concomitant with the recovery of drebrin A (DA), another actin-binding protein, at the chronic stage. Indeed, we demonstrated in cultured cells that in contrast to DA, α-actn-2 did not protect F-actin destabilization and DA inhibited α-actn-2 binding to F-actin. Such alteration could affect the anchoring of NR1 in dendritic spines. Furthermore, we showed that the expression of α-actn-2 and NR1 are co-down-regulated in membrane fractions of pilocarpine animals at chronic stage. Last, we showed that α-actn-2 is expressed in migrating newly born granule cells observed within the hilus of pilocarpine-treated rats. Altogether, our results suggest that α-actn-2 is not critical for the structural integrity and stabilization of granule cell dendritic spines. Instead, its expression is regulated when spinogenesis and morphogenesis occur and within migrating granule cells. Our data also suggest that the balance between α-actn-2 and DA expression levels may modulate NR1 anchoring within dendritic spines.


Asunto(s)
Actinina/biosíntesis , Movimiento Celular/genética , Espinas Dendríticas , Giro Dentado/fisiopatología , Plasticidad Neuronal/genética , Convulsiones/fisiopatología , Actinina/genética , Actinas/metabolismo , Animales , Convulsivantes , Masculino , Neurogénesis/genética , Neuropéptidos/metabolismo , Pilocarpina , Ratas , Ratas Wistar , Receptores de GABA/metabolismo , Convulsiones/inducido químicamente , Sinapsis
7.
Science ; 374(6568): eabk2055, 2021 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-34735259

RESUMEN

During development, neural circuit formation requires the stabilization of active γ-aminobutyric acid­mediated (GABAergic) synapses and the elimination of inactive ones. Here, we demonstrate that, although the activation of postsynaptic GABA type A receptors (GABAARs) and adenosine A2A receptors (A2ARs) stabilizes GABAergic synapses, only A2AR activation is sufficient. Both GABAAR- and A2AR-dependent signaling pathways act synergistically to produce adenosine 3',5'-monophosphate through the recruitment of the calcium­calmodulin­adenylyl cyclase pathway. Protein kinase A, thus activated, phosphorylates gephyrin on serine residue 303, which is required for GABAAR stabilization. Finally, the stabilization of pre- and postsynaptic GABAergic elements involves the interaction between gephyrin and the synaptogenic membrane protein Slitrk3. We propose that A2ARs act as detectors of active GABAergic synapses releasing GABA, adenosine triphosphate, and adenosine to regulate their fate toward stabilization or elimination.


Asunto(s)
Adenosina/metabolismo , Hipocampo/crecimiento & desarrollo , Neuronas/fisiología , Receptor de Adenosina A2A/metabolismo , Transducción de Señal , Sinapsis/fisiología , Ácido gamma-Aminobutírico/metabolismo , Antagonistas del Receptor de Adenosina A2 , Adenosina Trifosfato/metabolismo , Animales , Calcio/metabolismo , Cognición , AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Hipocampo/metabolismo , Masculino , Proteínas de la Membrana/metabolismo , Ratones , Proteínas del Tejido Nervioso , Fosforilación , Receptor de Adenosina A2A/genética , Receptores de GABA-A/metabolismo
8.
J Neurosci ; 29(17): 5402-10, 2009 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-19403808

RESUMEN

Patients with temporal lobe epilepsy (TLE), the most common form of epilepsy in adults, often display cognitive deficits. The time course and underlying mechanisms of cognitive decline remain unknown during epileptogenesis (the process leading to epilepsy). Using the rat pilocarpine model of TLE, we performed a longitudinal study to assess spatial and nonspatial cognitive performance during epileptogenesis. In parallel, we monitored interictal-like activity (ILA) in the hippocampal CA1 region, as well as theta oscillations, a brain rhythm central to numerous cognitive processes. Here, we report that spatial memory was altered soon after pilocarpine-induced status epilepticus, i.e., already during the seizure-free, latent period. Spatial deficits correlated with a decrease in the power of theta oscillations but not with the frequency of ILA. Spatial deficits persisted when animals had spontaneous seizures (chronic stage) without further modification. In contrast, nonspatial memory performances remained unaffected throughout. We conclude that the reorganization of hippocampal circuitry that immediately follows the initial insult can affect theta oscillation mechanisms, in turn, resulting in deficits in hippocampus-dependent memory tasks. These deficits may be dissociated from the process that leads to epilepsy itself but could instead constitute, as ILA, early markers in at-risk patients and/or provide beneficial therapeutic targets.


Asunto(s)
Epilepsia del Lóbulo Temporal/fisiopatología , Trastornos de la Memoria/fisiopatología , Memoria/fisiología , Conducta Espacial/fisiología , Ritmo Teta , Animales , Epilepsia del Lóbulo Temporal/inducido químicamente , Masculino , Trastornos de la Memoria/inducido químicamente , Pilocarpina/toxicidad , Ratas , Ratas Wistar , Conducta Espacial/efectos de los fármacos , Ritmo Teta/efectos de los fármacos , Factores de Tiempo
9.
Eur J Neurosci ; 32(5): 771-85, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20722723

RESUMEN

The supramammillary nucleus (SuM) provides substantial projections to the hippocampal formation. This hypothalamic structure is involved in the regulation of hippocampal theta rhythm and therefore the control of hippocampal-dependent cognitive functions as well as emotional behavior. A major goal of this study was to characterize the neurotransmitter identity of the SuM-hippocampal pathways. Our findings demonstrate two distinct neurochemical pathways in rat. The first pathway originates from neurons in the lateral region of the SuM and innervates the supragranular layer of the dorsal dentate gyrus and, to a much lesser extent, the ventral dentate gyrus. This pathway displays a unique dual phenotype for GABAergic and glutamatergic neurotransmission. Axon terminals contain markers of GABAergic neurotransmission, including the synthesizing enzyme of GABA, glutamate decarboxylase 65, and the vesicular GABA transporter and also a marker of glutamatergic neurotransmission, the vesicular glutamate transporter 2. The second pathway originates from neurons in the most posterior and medial part of the SuM and innervates exclusively the inner molecular layer of the ventral dentate gyrus and the CA2/CA3a pyramidal cell layer of the hippocampus. The axon terminals from the medial part of the SuM contain the vesicular glutamate transporter 2 only. These data demonstrate for the first time the heterogeneity of the SuM-hippocampal pathways, not only from an anatomical but also a neurochemical point of view. These pathways, implicated in different neuronal networks, could modulate different hippocampal activities. They are likely to be involved differently in the regulation of hippocampal theta rhythm and associated cognitive functions as well as emotional behavior.


Asunto(s)
Hipocampo/metabolismo , Tubérculos Mamilares/metabolismo , Vías Nerviosas/metabolismo , Neurotransmisores/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Animales , Ácido Glutámico/metabolismo , Hipocampo/anatomía & histología , Hipocampo/ultraestructura , Masculino , Tubérculos Mamilares/anatomía & histología , Técnicas de Trazados de Vías Neuroanatómicas/métodos , Fenotipo , Terminales Presinápticos/metabolismo , Terminales Presinápticos/ultraestructura , Ratas , Ratas Sprague-Dawley
10.
Cereb Cortex ; 19(2): 249-62, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18477686

RESUMEN

In human most cortical gamma-aminobutyric acidergic (GABAergic) neurons are produced in the proliferative zones of the dorsal telencephalon in contrast to rodents. We report that in cynomolgus monkey fetuses cortical GABAergic neurons are generated in the proliferative zones of the dorsal telencephalon, in addition to the proliferative region of the ventral telencephalon, the ganglionic eminence (GE), however, with a temporal delay. GABAergic neuron progenitors labeled for Mash1 and GAD65 were present mainly in the GE at embryonic days (E) 47-55, and in the entire dorsal telencephalon at E64-75. These progenitors within the dorsal telencephalon are generated locally rather than in the GE. The ventral and dorsal lineages of cortical GABAergic neurons display different laminar distribution. Early generated GABAergic neurons from the GE mostly populate the marginal zone and subplate, whereas cortical plate GABAergic neurons originate from both ventral and dorsal telencephalon. A differential regulation of the two GABA synthesizing enzymes (GAD65 and GAD67) parallels GABAergic neuron differentiation. GAD65 is preferentially expressed in GABAergic progenitors and migrating neurons, GAD67 in morphologically differentiated neurons. Therefore, the dorsal telencephalic origin of cortical GABAergic neurons is not human-specific but appears as a former event in the ascent of evolution that could provide GABAergic neurons to an expending neocortex.


Asunto(s)
Neuronas/fisiología , Ácido gamma-Aminobutírico/fisiología , Animales , Diferenciación Celular/fisiología , Corteza Cerebral/citología , Corteza Cerebral/crecimiento & desarrollo , Corteza Cerebral/fisiología , Glutamato Descarboxilasa/genética , Inmunohistoquímica , Antígeno Ki-67/genética , Macaca fascicularis , Microscopía Confocal , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/genética , Telencéfalo/citología , Telencéfalo/crecimiento & desarrollo , Telencéfalo/fisiología
11.
Front Mol Neurosci ; 13: 76, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32499678

RESUMEN

The striatum, the main input structure of the basal ganglia, is critical for action selection and adaptive motor control. To understand the neuronal mechanisms underlying these functions, an analysis of microcircuits that compose the striatum is necessary. Among these, cholinergic interneurons (ChIs) provide intrinsic striatal innervation whose dysfunction is implicated in neuropsychiatric diseases, such as Parkinson's disease and Tourette syndrome. The ability to experimentally manipulate the activity of ChIs is critical to gain insights into their contribution to the normal function of the striatum and the emergence of behavioral abnormalities in pathological states. In this study, we generated and tested CAV-pChAT-GFP, a replication-defective canine adenovirus type 2 (CAV-2) vector carrying the green fluorescent protein (GFP) sequence under the control of the human choline acetyltransferase (ChAT) promoter. We first tested the potential specificity of CAV-pChAT-GFP to label striatal ChIs in a rat before performing experiments on two macaque monkeys. In the vector-injected rat and monkey striatum, we found that GFP expression preferentially colocalized with ChAT-immunoreactivity throughout the striatum, including those from local circuit interneurons. CAV-2 vectors containing transgene driven by the ChAT promoter provide a powerful tool for investigating ChI contributions to circuit function and behavior in nonhuman primates.

12.
Neuroscience ; 439: 181-194, 2020 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-31302264

RESUMEN

Genetically encoded biosensors are widely used in cell biology for the non-invasive imaging of concentrations of ions or the activity of enzymes, to evaluate the distribution of small molecules, proteins and organelles, and to image protein interactions in living cells. These fluorescent molecules can be used either by transient expression in cultured cells or in entire organisms or through stable expression by producing transgenic animals characterized by genetically encoded and heritable biosensors. Using the mouse Thy1 mini-promoter, we generated a line of transgenic mice expressing a genetically encoded sensor for the simultaneous measurements of intracellular Cl- and pH. This construct, called ClopHensor, consists of a H+- and Cl--sensitive variant of the enhanced green fluorescent protein (E2GFP) fused with a red fluorescent protein (DsRedm). Stimulation of hippocampal Schaffer collaterals proved that the sensor is functionally active. To reveal the expression pattern of ClopHensor across the brain of Thy1::ClopHensor mice, we obtained transparent brain samples using the CLARITY method and imaged them with confocal and light-sheet microscopy. We then developed a semi-quantitative approach to identify brain structures with high intrinsic sensor fluorescence. This approach allowed us to assess cell morphology and track axonal projection, as well as to confirm E2GFP and DsRedm fluorescence colocalization. This analysis also provides a map of the brain areas suitable for non-invasive monitoring of intracellular Cl-/pH in normal and pathological conditions. This article is part of a Special Issue entitled: Honoring Ricardo Miledi - outstanding neuroscientist of XX-XXI centuries.


Asunto(s)
Axones , Encéfalo , Animales , Proteínas Fluorescentes Verdes/genética , Concentración de Iones de Hidrógeno , Ratones , Ratones Transgénicos , Microscopía Fluorescente
13.
Brain Struct Funct ; 225(9): 2643-2668, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32970253

RESUMEN

Several studies suggest that neurons from the lateral region of the SuM (SuML) innervating the dorsal dentate gyrus (DG) display a dual GABAergic and glutamatergic transmission and are specifically activated during paradoxical (REM) sleep (PS). The objective of the present study is to characterize the anatomical, neurochemical and electrophysiological properties of the SuML-DG projection neurons and to determine how they control DG oscillations and neuronal activation during PS and other vigilance states. For this purpose, we combine structural connectivity techniques using neurotropic viral vectors (rabies virus, AAV), neurochemical anatomy (immunohistochemistry, in situ hybridization) and imaging (light, electron and confocal microscopy) with in vitro (patch clamp) and in vivo (LFP, EEG) optogenetic and electrophysiological recordings performed in transgenic VGLUT2-cre male mice. At the cellular level, we show that the SuML-DG neurons co-release GABA and glutamate on dentate granule cells and increase the activity of a subset of DG granule cells. At the network level, we show that activation of the SuML-DG pathway increases theta power and frequency during PS as well as gamma power during PS and waking in the DG. At the behavioral level, we show that the activation of this pathway does not change animal behavior during PS, induces awakening during slow wave sleep and increases motor activity during waking. These results suggest that the SuML-DG pathway is capable of supporting the increase of theta and gamma power in the DG observed during PS and plays an important modulatory role of DG network activity during this state.


Asunto(s)
Giro Dentado/fisiología , Neuronas GABAérgicas/fisiología , Rayos gamma , Ácido Glutámico/fisiología , Hipotálamo Posterior/fisiología , Neuronas/fisiología , Sueño REM/fisiología , Ritmo Teta , Animales , Giro Dentado/citología , Neuronas GABAérgicas/citología , Hipotálamo Posterior/citología , Masculino , Potenciales de la Membrana , Ratones Transgénicos , Neuronas/citología
14.
Neurobiol Dis ; 33(3): 436-47, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19135151

RESUMEN

I(h) tunes hippocampal CA1 pyramidal cell dendrites to optimally respond to theta inputs (4-12 Hz), and provides a negative time delay to theta inputs. Decreased I(h) activity, as seen in experimental temporal lobe epilepsy (TLE), could significantly alter the response of dendrites to theta inputs. Here we report a progressive erosion of theta resonance and phase lead in pyramidal cell dendrites during epileptogenesis in a rat model of TLE. These alterations were due to decreased I(h) availability, via a decline in HCN1/HCN2 subunit expression resulting in decreased h currents, and altered kinetics of the residual channels. This acquired HCN channelopathy thus compromises temporal coding and tuning to theta inputs in pyramidal cell dendrites. Decreased theta resonance in vitro also correlated with a reduction in theta frequency and power in vivo. We suggest that the neuronal/circuitry changes associated with TLE, including altered I(h)-dependent inductive mechanisms, can disrupt hippocampal theta function.


Asunto(s)
Canales Catiónicos Regulados por Nucleótidos Cíclicos/fisiología , Epilepsia del Lóbulo Temporal/fisiopatología , Células Piramidales/fisiopatología , Ritmo Teta , Análisis de Varianza , Animales , Canales Catiónicos Regulados por Nucleótidos Cíclicos/genética , Modelos Animales de Enfermedad , Estimulación Eléctrica , Epilepsia del Lóbulo Temporal/inducido químicamente , Hipocampo/metabolismo , Hipocampo/fisiopatología , Técnicas In Vitro , Masculino , Potenciales de la Membrana , Microelectrodos , Técnicas de Placa-Clamp , Pilocarpina , Células Piramidales/ultraestructura , ARN Mensajero/metabolismo , Ratas , Ratas Wistar , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
15.
Front Cell Neurosci ; 13: 438, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31680863

RESUMEN

Psychoactive drugs used during pregnancy can affect the development of the brain of offspring, directly triggering neurological disorders or increasing the risk for their occurrence. Caffeine is the most widely consumed psychoactive drug, including during pregnancy. In Wild type mice, early life exposure to caffeine renders offspring more susceptible to seizures. Here, we tested the long-term consequences of early life exposure to caffeine in THY-Tau22 transgenic mice, a model of Alzheimer's disease-like Tau pathology. Caffeine exposed mutant offspring developed cognitive earlier than water treated mutants. Electrophysiological recordings of hippocampal CA1 pyramidal cells in vitro revealed that early life exposure to caffeine changed the way the glutamatergic and GABAergic drives were modified by the Tau pathology. We conclude that early-life exposure to caffeine affects the Tau phenotype and we suggest that caffeine exposure during pregnancy may constitute a risk-factor for early onset of Alzheimer's disease-like pathology.

16.
Coll Antropol ; 32 Suppl 1: 9-17, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18405052

RESUMEN

In this mini-review we present recent data about origin of GABA-ergic (gama-aminobutyric acid) neurons in the mammalian forebrain, including the diencephalon and telencephalon. The interest in GABA-ergic neurons, which in cerebral cortex mostly correspond to local circuit neurons (interneurons), has increased in the past decade. Many studies have shown that in lower mammals all hippocampal and almost all neo-cortical GABA-ergic neurons are born in the specific region named ganglionic eminence, and not locally in proliferative layers all around telencephalic vesicle. The ganglionic eminence, that represents a region with thick proliferative-subventricular layer in the ventral (basal) part of telencephalon, was classically thought to give neurons to basal ganglia and septal nuclei, whereas proliferative layers of dorsal telencephalon give neurons to cerebral cortex including hippocampus. It was thought that neurons migrate from proliferative layer to their target region following a radial orientation. However, data in lower mammals showed that this is the case only for glutamatergic principal cells, i.e. projection neurons. GABA-ergic neurons use long distance tangentional migration, parallel to pial surface to reach, from ganglionic eminence, their targeting layer in the cerebral cortex. Especially intriguing, but frequently neglecting, several studies suggest that mammalian evolution might use different developmental rules to provide GABA-ergic neurons to an expending brain. In this review we focus on specific events underlying GABA-ergic neuron development in human and non-human primates. Disturbances of the GABAergic network are found in many neurological and psychiatric disorders, some of them might result from altered production or migration of these neurons during development. Therefore, it is crucial to understand human-specific mechanisms that regulate the development of GABA-ergic neurons.


Asunto(s)
Corteza Cerebral/anatomía & histología , Interneuronas/fisiología , Neuronas/fisiología , Prosencéfalo/anatomía & histología , Ácido gamma-Aminobutírico/fisiología , Animales , Corteza Cerebral/crecimiento & desarrollo , Desarrollo Fetal , Humanos , Prosencéfalo/crecimiento & desarrollo , Especificidad de la Especie
17.
J Comp Neurol ; 503(3): 466-85, 2007 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-17503488

RESUMEN

The reorganizations of the overall intrinsic glutamatergic and gamma-aminobutyric acid (GABA)-ergic hippocampal networks as well as the time course of these reorganizations during development of pilocarpine-induced temporal lobe epilepsy were studied with in situ hybridization and immunohistochemistry experiments for the vesicular glutamate transporter 1 (VGLUT1) and the vesicular GABA transporter (VGAT). These transporters are particularly interesting as specific markers for glutamatergic and GABAergic neurons, respectively, whose expression levels could reflect the demand for synaptic transmission and their average activity. We report that 1) concomitantly with the loss of some subpopulations of VGAT-containing neurons, there was an up-regulation of VGAT synthesis in all remaining GABA neurons as early as 1 week after pilocarpine injection. This enhanced synthesis is characterized by marked increases in the relative amount of VGAT mRNAs in interneurons associated with increased intensity of axon terminal labeling for VGAT in all hippocampal layers. 2) There was a striking loss of mossy cells during the latent period, demonstrated by a long-term decrease of VGLUT1 mRNA-containing hilar neurons and associated loss of VGLUT1-containing terminals in the dentate gyrus inner molecular layer. 3) There were aberrant VGLUT1-containing terminals at the chronic stage resulting from axonal sprouting of granule and pyramidal cells. This is illustrated by a recovery of VGLUT1 immunoreactivity in the inner molecular layer and an increased VGLUT1 immunolabeling in the CA1-CA3 dendritic layers. These data indicate that an increased activity of remaining GABAergic interneurons occurs during the latent period, in parallel with the loss of vulnerable glutamatergic and GABAergic neurons preceding the reorganization of glutamatergic networks.


Asunto(s)
Hipocampo/metabolismo , Neuronas/metabolismo , Convulsiones/metabolismo , Proteína 1 de Transporte Vesicular de Glutamato/metabolismo , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/metabolismo , Animales , Proteínas Transportadoras de GABA en la Membrana Plasmática/metabolismo , Hipocampo/citología , Masculino , Vías Nerviosas/citología , Vías Nerviosas/metabolismo , Neuronas/citología , Pilocarpina , Ratas , Ratas Wistar , Convulsiones/inducido químicamente , Convulsiones/patología
18.
Front Behav Neurosci ; 11: 82, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28555096

RESUMEN

HIGHLIGHTS Blockade of dopamine D1 receptors in ACC suppressed instrumental learning when overt responding was required.Covert learning through observation was not impaired.After treatment with a dopamine antagonist, instrumental learning recovered but not the rat's pretreatment level of effort tolerance.ACC dopamine is not necessary for acquisition of task-relevant cues during learning, but regulates energy expenditure and effort based decision. Dopamine activity in anterior cingulate cortex (ACC) is essential for various aspects of instrumental behavior, including learning and effort based decision making. To dissociate learning from physical effort, we studied both observational (covert) learning, and trial-and-error (overt) learning. If ACC dopamine activity is required for task acquisition, its blockade should impair both overt and covert learning. If dopamine is not required for task acquisition, but solely for regulating the willingness to expend effort for reward, i.e., effort tolerance, blockade should impair overt learning but spare covert learning. Rats learned to push a lever for food rewards either with or without prior observation of an expert conspecific performing the same task. Before daily testing sessions, the rats received bilateral ACC microinfusions of SCH23390, a dopamine D1 receptor antagonist, or saline-control infusions. We found that dopamine blockade suppressed overt responding selectively, leaving covert task acquisition through observational learning intact. In subsequent testing sessions without dopamine blockade, rats recovered their overt-learning capacity but not their pre-treatment level of effort tolerance. These results suggest that ACC dopamine is not required for the acquisition of conditioned behaviors and that apparent learning impairments could instead reflect a reduced level of willingness to expend effort due to cortical dopamine blockade.

19.
Exp Neurol ; 295: 88-103, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28576568

RESUMEN

The consumption of psychoactive drugs during pregnancy can have deleterious effects on newborns. It remains unclear whether early-life exposure to caffeine, the most widely consumed psychoactive substance, alters brain development. We hypothesized that maternal caffeine ingestion during pregnancy and the early postnatal period in mice affects the construction and activity of cortical networks in offspring. To test this hypothesis, we focused on primary visual cortex (V1) as a model neocortical region. In a study design mimicking the daily consumption of approximately three cups of coffee during pregnancy in humans, caffeine was added to the drinking water of female mice and their offspring were compared to control offspring. Caffeine altered the construction of GABAergic neuronal networks in V1, as reflected by a reduced number of somatostatin-containing GABA neurons at postnatal days 6-7, with the remaining ones showing poorly developed dendritic arbors. These findings were accompanied by increased synaptic activity in vitro and elevated network activity in vivo in V1. Similarly, in vivo hippocampal network activity was altered from the neonatal period until adulthood. Finally, caffeine-exposed offspring showed increased seizure susceptibility in a hyperthermia-induced seizure model. In summary, our results indicate detrimental effects of developmental caffeine exposure on mouse brain development.


Asunto(s)
Cafeína/toxicidad , Estimulantes del Sistema Nervioso Central/toxicidad , Corteza Cerebral/crecimiento & desarrollo , Red Nerviosa/crecimiento & desarrollo , Animales , Animales Recién Nacidos , Corteza Cerebral/efectos de los fármacos , Dendritas/efectos de los fármacos , Fenómenos Electrofisiológicos/efectos de los fármacos , Femenino , Técnicas In Vitro , Masculino , Ratones , Neocórtex/efectos de los fármacos , Neocórtex/crecimiento & desarrollo , Red Nerviosa/efectos de los fármacos , Embarazo , Efectos Tardíos de la Exposición Prenatal , Convulsiones Febriles/inducido químicamente , Convulsiones Febriles/fisiopatología , Somatostatina/metabolismo , Corteza Visual/efectos de los fármacos , Corteza Visual/crecimiento & desarrollo , Ácido gamma-Aminobutírico/fisiología
20.
Brain Struct Funct ; 220(4): 2449-68, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24889162

RESUMEN

In mesial temporal lobe epilepsy (MTLE), spontaneous seizures likely originate from a multi-structural epileptogenic zone, including several regions of the limbic system connected to the hippocampal formation. In this study, we investigate the structural connectivity between the supramammillary nucleus (SuM) and the dentate gyrus (DG) in the model of MTLE induced by pilocarpine in the rat. This hypothalamic nucleus, which provides major extracortical projections to the hippocampal formation, plays a key role in the regulation of several hippocampus-dependent activities, including theta rhythms, memory function and emotional behavior, such as stress and anxiety, functions that are known to be altered in MTLE. Our findings demonstrate a marked reorganization of DG afferents originating from the SuM in pilocarpine-treated rats. This reorganization, which starts during the latent period, is massive when animals become epileptic and continue to evolve during epilepsy. It is characterized by an aberrant distribution and an increased number of axon terminals from neurons of both lateral and medial regions of the SuM, invading the entire inner molecular layer of the DG. This reorganization, which reflects an axon terminal sprouting from SuM neurons, could contribute to trigger spontaneous seizures within an altered hippocampal intrinsic circuitry.


Asunto(s)
Epilepsia del Lóbulo Temporal/patología , Hipocampo/fisiopatología , Hipotálamo Posterior/fisiopatología , Terminales Presinápticos/patología , Animales , Biotina/análogos & derivados , Biotina/metabolismo , Dextranos/metabolismo , Modelos Animales de Enfermedad , Epilepsia del Lóbulo Temporal/inducido químicamente , Masculino , Agonistas Muscarínicos , Vías Nerviosas/fisiopatología , Fosfopiruvato Hidratasa/metabolismo , Pilocarpina/toxicidad , Virus de la Rabia/metabolismo , Ratas , Ratas Wistar , Proteína 2 de Transporte Vesicular de Glutamato/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA