Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 60(3): 1578-1582, 2021 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-33007142

RESUMEN

New energetic polymers were synthesized from monomers containing a trans-2-tetrazene unit. In contrast to traditional binders, such as inert hydroxytelechelic polybutadiene or glycidyl azide polymers-in which the energetic features are on the side chains-the energetic groups in the polytetrazenes are incorporated directly in the polymer backbone. Thermal analyses demonstrated that decomposition occurs at approximately 130 °C, regardless of the polymer structure. Glass-transition temperatures ranged from -34.2 to 0.2 °C and could be lowered further (to -61 °C) with the help of a new diazidotetrazene energetic plasticizer. Interestingly, hexafluoroisopropanol (HFIP) enabled complete, room-temperature depolymerization within 1 week. This depolymerization should enable the recycling of unused pyrotechnic compositions based on these new binders.

2.
Chem Asian J ; 15(24): 4347-4357, 2020 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-33155765

RESUMEN

Functionalized hydrazines and bishydrazines are interesting straightforward precursors for accessing higher nitrogenated compounds. They offer structural diversity and promising energetic properties as well, namely for propulsion applications. A novel and scalable synthesis has been developed for a new family of bishydrazines, starting from monomethylhydrazine (MMH). This solvent-free route represents a suitable alternative to the one described in the literature. It was extended to design a new family of unsymmetrical hydrazines bearing various functional groups. A selected series of promising compounds, densified with nitrogenated groups (amino, hydrazino or azido functions), was identified as a class of plausible candidates for liquid propulsion. Indeed, the energetic interest of such hydrazines was demonstrated by computing their heats of formation and specific impulse values in bipropellant systems. This led to theoretical energetic performances comparable to that of the MMH/N2 O4 system already in use today.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA