Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 118(24)2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-34117120

RESUMEN

Hypertrophic cardiomyopathy (HCM) is the most common inherited form of heart disease, associated with over 1,000 mutations, many in ß-cardiac myosin (MYH7). Molecular studies of myosin with different HCM mutations have revealed a diversity of effects on ATPase and load-sensitive rate of detachment from actin. It has been difficult to predict how such diverse molecular effects combine to influence forces at the cellular level and further influence cellular phenotypes. This study focused on the P710R mutation that dramatically decreased in vitro motility velocity and actin-activated ATPase, in contrast to other MYH7 mutations. Optical trap measurements of single myosin molecules revealed that this mutation reduced the step size of the myosin motor and the load sensitivity of the actin detachment rate. Conversely, this mutation destabilized the super relaxed state in longer, two-headed myosin constructs, freeing more heads to generate force. Micropatterned human induced pluripotent derived stem cell (hiPSC)-cardiomyocytes CRISPR-edited with the P710R mutation produced significantly increased force (measured by traction force microscopy) compared with isogenic control cells. The P710R mutation also caused cardiomyocyte hypertrophy and cytoskeletal remodeling as measured by immunostaining and electron microscopy. Cellular hypertrophy was prevented in the P710R cells by inhibition of ERK or Akt. Finally, we used a computational model that integrated the measured molecular changes to predict the measured traction forces. These results confirm a key role for regulation of the super relaxed state in driving hypercontractility in HCM with the P710R mutation and demonstrate the value of a multiscale approach in revealing key mechanisms of disease.


Asunto(s)
Cardiomiopatía Hipertrófica/genética , Cardiomiopatía Hipertrófica/fisiopatología , Mutación/genética , Contracción Miocárdica/genética , Miosinas Ventriculares/genética , Actinas/metabolismo , Animales , Fenómenos Biomecánicos , Calcio/metabolismo , Línea Celular , Tamaño de la Célula , Predisposición Genética a la Enfermedad , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Ratones , Modelos Biológicos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/ultraestructura , Miofibrillas/metabolismo
2.
J Mol Cell Cardiol ; 177: 28-37, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36841153

RESUMEN

BACKGROUND: Previous studies have implicated p53-dependent mitochondrial dysfunction in sepsis induced end organ injury, including sepsis-induced myocardial dysfunction (SIMD). However, the mechanisms behind p53 localization to the mitochondria have not been well established. Dynamin-related protein 1 (Drp1), a mediator of mitochondrial fission, may play a role in p53 mitochondrial localization. Here we examined the role of Drp1/p53 interaction in SIMD using in vitro and murine models of sepsis. METHODS: H9c2 cardiomyoblasts and BALB/c mice were exposed to lipopolysaccharide (LPS) to model sepsis phenotype. Pharmacologic inhibitors of Drp1 activation (ψDrp1) and of p53 mitochondrial binding (pifithrin µ, PFTµ) were utilized to assess interaction between Drp1 and p53, and the subsequent downstream impact on mitochondrial morphology and function, cardiomyocyte function, and sepsis phenotype. RESULTS: Both in vitro and murine models demonstrated an increase in physical Drp1/p53 interaction following LPS treatment, which was associated with increased p53 mitochondrial localization, and mitochondrial dysfunction. This Drp1/p53 interaction was inhibited by ΨDrp1, suggesting that this interaction is dependent on Drp1 activation. Treatment of H9c2 cells with either ΨDrp1 or PFTµ inhibited the LPS mediated localization of Drp1/p53 to the mitochondria, decreased oxidative stress, improved cellular respiration and ATP production. Similarly, treatment of BALB/c mice with either ΨDrp1 or PFTµ decreased LPS-mediated mitochondrial localization of p53, mitochondrial ROS in cardiac tissue, and subsequently improved cardiomyocyte contractile function and survival. CONCLUSION: Drp1/p53 interaction and mitochondrial localization is a key prodrome to mitochondrial damage in SIMD and inhibiting this interaction may serve as a therapeutic target.


Asunto(s)
Cardiomiopatías , Sepsis , Ratones , Animales , Proteína p53 Supresora de Tumor , Lipopolisacáridos/efectos adversos , Cardiomiopatías/metabolismo , Dinaminas/metabolismo , Sepsis/complicaciones , Sepsis/inducido químicamente , Dinámicas Mitocondriales/genética
3.
Circulation ; 145(4): 279-294, 2022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-34874743

RESUMEN

BACKGROUND: Multiple pharmacogenomic studies have identified the synonymous genomic variant rs7853758 (G > A, L461L) and the intronic variant rs885004 in SLC28A3 (solute carrier family 28 member 3) as statistically associated with a lower incidence of anthracycline-induced cardiotoxicity. However, the true causal variant(s), the cardioprotective mechanism of this locus, the role of SLC28A3 and other solute carrier (SLC) transporters in anthracycline-induced cardiotoxicity, and the suitability of SLC transporters as targets for cardioprotective drugs has not been investigated. METHODS: Six well-phenotyped, doxorubicin-treated pediatric patients from the original association study cohort were recruited again, and human induced pluripotent stem cell-derived cardiomyocytes were generated. Patient-specific doxorubicin-induced cardiotoxicity (DIC) was then characterized using assays of cell viability, activated caspase 3/7, and doxorubicin uptake. The role of SLC28A3 in DIC was then queried using overexpression and knockout of SLC28A3 in isogenic human-induced pluripotent stem cell-derived cardiomyocytes using a CRISPR/Cas9 (Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated protein 9). Fine-mapping of the SLC28A3 locus was then completed after SLC28A3 resequencing and an extended in silico haplotype and functional analysis. Genome editing of the potential causal variant was done using cytosine base editor. SLC28A3-AS1 overexpression was done using a lentiviral plasmid-based transduction and was validated using stranded RNA-sequencing after ribosomal RNA depletion. Drug screening was done using the Prestwick Chemical Library (n = 1200), followed by in vivo validation in mice. The effect of desipramine on doxorubicin cytotoxicity was also investigated in 8 cancer cell lines. RESULTS: Here, using the most commonly used anthracycline, doxorubicin, we demonstrate that patient-derived cardiomyocytes recapitulate the cardioprotective effect of the SLC28A3 locus and that SLC28A3 expression influences the severity of DIC. Using Nanopore-based fine-mapping and base editing, we identify a novel cardioprotective single nucleotide polymorphism, rs11140490, in the SLC28A3 locus; its effect is exerted via regulation of an antisense long noncoding RNA (SLC28A3-AS1) that overlaps with SLC28A3. Using high-throughput drug screening in patient-derived cardiomyocytes and whole organism validation in mice, we identify the SLC competitive inhibitor desipramine as protective against DIC. CONCLUSIONS: This work demonstrates the power of the human induced pluripotent stem cell model to take a single nucleotide polymorphism from a statistical association through to drug discovery, providing human cell-tested data for clinical trials to attenuate DIC.


Asunto(s)
Cardiotoxicidad/fisiopatología , Doxorrubicina/efectos adversos , Variación Genética/genética , Animales , Modelos Animales de Enfermedad , Genómica , Humanos , Masculino , Ratones
4.
Circulation ; 144(21): 1714-1731, 2021 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-34672721

RESUMEN

BACKGROUND: Hypertrophic cardiomyopathy (HCM) is a complex disease partly explained by the effects of individual gene variants on sarcomeric protein biomechanics. At the cellular level, HCM mutations most commonly enhance force production, leading to higher energy demands. Despite significant advances in elucidating sarcomeric structure-function relationships, there is still much to be learned about the mechanisms that link altered cardiac energetics to HCM phenotypes. In this work, we test the hypothesis that changes in cardiac energetics represent a common pathophysiologic pathway in HCM. METHODS: We performed a comprehensive multiomics profile of the molecular (transcripts, metabolites, and complex lipids), ultrastructural, and functional components of HCM energetics using myocardial samples from 27 HCM patients and 13 normal controls (donor hearts). RESULTS: Integrated omics analysis revealed alterations in a wide array of biochemical pathways with major dysregulation in fatty acid metabolism, reduction of acylcarnitines, and accumulation of free fatty acids. HCM hearts showed evidence of global energetic decompensation manifested by a decrease in high energy phosphate metabolites (ATP, ADP, and phosphocreatine) and a reduction in mitochondrial genes involved in creatine kinase and ATP synthesis. Accompanying these metabolic derangements, electron microscopy showed an increased fraction of severely damaged mitochondria with reduced cristae density, coinciding with reduced citrate synthase activity and mitochondrial oxidative respiration. These mitochondrial abnormalities were associated with elevated reactive oxygen species and reduced antioxidant defenses. However, despite significant mitochondrial injury, HCM hearts failed to upregulate mitophagic clearance. CONCLUSIONS: Overall, our findings suggest that perturbed metabolic signaling and mitochondrial dysfunction are common pathogenic mechanisms in patients with HCM. These results highlight potential new drug targets for attenuation of the clinical disease through improving metabolic function and reducing mitochondrial injury.


Asunto(s)
Cardiomiopatía Hipertrófica/etiología , Cardiomiopatía Hipertrófica/metabolismo , Susceptibilidad a Enfermedades , Metabolismo Energético , Mitocondrias/genética , Mitocondrias/metabolismo , Adulto , Anciano , Cardiomiopatía Hipertrófica/diagnóstico , Cardiomiopatía Hipertrófica/terapia , Respiración de la Célula/genética , Biología Computacional/métodos , Manejo de la Enfermedad , Femenino , Perfilación de la Expresión Génica , Pruebas de Función Cardíaca , Humanos , Lipidómica , Masculino , Metaboloma , Metabolómica/métodos , Persona de Mediana Edad , Mitocondrias/ultraestructura , Mutación , Estrés Oxidativo , Especies Reactivas de Oxígeno , Transcriptoma
5.
Am J Respir Cell Mol Biol ; 65(3): 272-287, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33938785

RESUMEN

Right ventricular (RV) function is the predominant determinant of survival in patients with pulmonary arterial hypertension (PAH). In preclinical models, pharmacological activation of BMP (bone morphogenetic protein) signaling with FK506 (tacrolimus) improved RV function by decreasing RV afterload. FK506 therapy further stabilized three patients with end-stage PAH. Whether FK506 has direct effects on the pressure-overloaded right ventricle is yet unknown. We hypothesized that increasing cardiac BMP signaling with FK506 improves RV structure and function in a model of fixed RV afterload after pulmonary artery banding (PAB). Direct cardiac effects of FK506 on the microvasculature and RV fibrosis were studied after surgical PAB in wild-type and heterozygous Bmpr2 mutant mice. RV function and strain were assessed longitudinally via cardiac magnetic resonance imaging during continuous FK506 infusion. Genetic lineage tracing of endothelial cells (ECs) was performed to assess the contribution of ECs to fibrosis. Molecular mechanistic studies were performed in human cardiac fibroblasts and ECs. In mice, low BMP signaling in the right ventricle exaggerated PAB-induced RV fibrosis. FK506 therapy restored cardiac BMP signaling, reduced RV fibrosis in a BMP-dependent manner independent from its immunosuppressive effect, preserved RV capillarization, and improved RV function and strain over the time course of disease. Endothelial mesenchymal transition was a rare event and did not significantly contribute to cardiac fibrosis after PAB. Mechanistically, FK506 required ALK1 in human cardiac fibroblasts as a BMPR2 co-receptor to reduce TGFß1-induced proliferation and collagen production. Our study demonstrates that increasing cardiac BMP signaling with FK506 improves RV structure and function independent from its previously described beneficial effects on pulmonary vascular remodeling.


Asunto(s)
Receptores de Proteínas Morfogenéticas Óseas de Tipo II/metabolismo , Proteínas Morfogenéticas Óseas/metabolismo , Hipertensión Arterial Pulmonar/metabolismo , Transducción de Señal/efectos de los fármacos , Tacrolimus/farmacología , Función Ventricular Derecha/efectos de los fármacos , Animales , Receptores de Proteínas Morfogenéticas Óseas de Tipo II/genética , Proteínas Morfogenéticas Óseas/genética , Fibroblastos/metabolismo , Fibrosis , Humanos , Masculino , Ratones , Ratones Mutantes , Miocardio/metabolismo , Hipertensión Arterial Pulmonar/tratamiento farmacológico , Hipertensión Arterial Pulmonar/genética , Transducción de Señal/genética , Función Ventricular Derecha/genética
6.
Circulation ; 142(17): 1667-1683, 2020 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-32806952

RESUMEN

BACKGROUND: In patients with complex congenital heart disease, such as those with tetralogy of Fallot, the right ventricle (RV) is subject to pressure overload stress, leading to RV hypertrophy and eventually RV failure. The role of lipid peroxidation, a potent form of oxidative stress, in mediating RV hypertrophy and failure in congenital heart disease is unknown. METHODS: Lipid peroxidation and mitochondrial function and structure were assessed in right ventricle (RV) myocardium collected from patients with RV hypertrophy with normal RV systolic function (RV fractional area change, 47.3±3.8%) and in patients with RV failure showing decreased RV systolic function (RV fractional area change, 26.6±3.1%). The mechanism of the effect of lipid peroxidation, mediated by 4-hydroxynonenal ([4HNE] a byproduct of lipid peroxidation) on mitochondrial function and structure was assessed in HL1 murine cardiomyocytes and human induced pluripotent stem cell-derived cardiomyocytes. RESULTS: RV failure was characterized by an increase in 4HNE adduction of metabolic and mitochondrial proteins (16 of 27 identified proteins), in particular electron transport chain proteins. Sarcomeric (myosin) and cytoskeletal proteins (desmin, tubulin) also underwent 4HNE adduction. RV failure showed lower oxidative phosphorylation (moderate RV hypertrophy, 287.6±19.75 versus RV failure, 137.8±11.57 pmol/[sec×mL]; P=0.0004), and mitochondrial structural damage. Using a cell model, we show that 4HNE decreases cell number and oxidative phosphorylation (control, 388.1±23.54 versus 4HNE, 143.7±11.64 pmol/[sec×mL]; P<0.0001). Carvedilol, a known antioxidant did not decrease 4HNE adduction of metabolic and mitochondrial proteins and did not improve oxidative phosphorylation. CONCLUSIONS: Metabolic, mitochondrial, sarcomeric, and cytoskeletal proteins are susceptible to 4HNE-adduction in patients with RV failure. 4HNE decreases mitochondrial oxygen consumption by inhibiting electron transport chain complexes. Carvedilol did not improve the 4HNE-mediated decrease in oxygen consumption. Strategies to decrease lipid peroxidation could improve mitochondrial energy generation and cardiomyocyte survival and improve RV failure in patients with congenital heart disease.


Asunto(s)
Cardiopatías Congénitas/fisiopatología , Insuficiencia Cardíaca/fisiopatología , Miocardio/patología , Disfunción Ventricular Derecha/fisiopatología , Animales , Niño , Preescolar , Metabolismo Energético , Humanos , Masculino , Ratones , Adulto Joven
7.
Nature ; 525(7570): 479-85, 2015 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-26375005

RESUMEN

The elucidation of factors that activate the regeneration of the adult mammalian heart is of major scientific and therapeutic importance. Here we found that epicardial cells contain a potent cardiogenic activity identified as follistatin-like 1 (Fstl1). Epicardial Fstl1 declines following myocardial infarction and is replaced by myocardial expression. Myocardial Fstl1 does not promote regeneration, either basally or upon transgenic overexpression. Application of the human Fstl1 protein (FSTL1) via an epicardial patch stimulates cell cycle entry and division of pre-existing cardiomyocytes, improving cardiac function and survival in mouse and swine models of myocardial infarction. The data suggest that the loss of epicardial FSTL1 is a maladaptive response to injury, and that its restoration would be an effective way to reverse myocardial death and remodelling following myocardial infarction in humans.


Asunto(s)
Proteínas Relacionadas con la Folistatina/metabolismo , Miocardio/metabolismo , Pericardio/crecimiento & desarrollo , Pericardio/metabolismo , Regeneración , Animales , Ciclo Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Medios de Cultivo Condicionados/farmacología , Femenino , Proteínas Relacionadas con la Folistatina/genética , Humanos , Masculino , Ratones , Mioblastos Cardíacos/citología , Mioblastos Cardíacos/efectos de los fármacos , Infarto del Miocardio/genética , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Infarto del Miocardio/fisiopatología , Miocitos Cardíacos/citología , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Pericardio/citología , Pericardio/efectos de los fármacos , Ratas , Regeneración/efectos de los fármacos , Transducción de Señal , Porcinos , Transgenes/genética
8.
Circ Res ; 122(2): 282-295, 2018 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-29233845

RESUMEN

RATIONALE: Mitochondria play a dual role in the heart, responsible for meeting energetic demands and regulating cell death. Paradigms have held that mitochondrial fission and fragmentation are the result of pathological stresses, such as ischemia, are an indicator of poor mitochondrial health, and lead to mitophagy and cell death. However, recent studies demonstrate that inhibiting fission also results in decreased mitochondrial function and cardiac impairment, suggesting that fission is important for maintaining cardiac and mitochondrial bioenergetic homeostasis. OBJECTIVE: The purpose of this study is to determine whether mitochondrial fission and fragmentation can be an adaptive mechanism used by the heart to augment mitochondrial and cardiac function during a normal physiological stress, such as exercise. METHODS AND RESULTS: We demonstrate a novel role for cardiac mitochondrial fission as a normal adaptation to increased energetic demand. During submaximal exercise, physiological mitochondrial fragmentation results in enhanced, rather than impaired, mitochondrial function and is mediated, in part, by ß1-adrenergic receptor signaling. Similar to pathological fragmentation, physiological fragmentation is induced by activation of dynamin-related protein 1; however, unlike pathological fragmentation, membrane potential is maintained and regulators of mitophagy are downregulated. Inhibition of fission with P110, Mdivi-1 (mitochondrial division inhibitor), or in mice with cardiac-specific dynamin-related protein 1 ablation significantly decreases exercise capacity. CONCLUSIONS: These findings demonstrate the requirement for physiological mitochondrial fragmentation to meet the energetic demands of exercise, as well as providing additional support for the evolving conceptual framework, where mitochondrial fission and fragmentation play a role in the balance between mitochondrial maintenance of normal physiology and response to disease.


Asunto(s)
Adaptación Fisiológica/fisiología , Metabolismo Energético/fisiología , Dinámicas Mitocondriales/fisiología , Condicionamiento Físico Animal/fisiología , Adaptación Fisiológica/efectos de los fármacos , Animales , Metabolismo Energético/efectos de los fármacos , Masculino , Ratones , Ratones Noqueados , Dinámicas Mitocondriales/efectos de los fármacos , Condicionamiento Físico Animal/métodos , Quinazolinonas/farmacología
9.
FASEB J ; 30(4): 1464-79, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26675706

RESUMEN

Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are a powerful platform for uncovering disease mechanisms and assessing drugs for efficacy/toxicity. However, the accuracy with which hiPSC-CMs recapitulate the contractile and remodeling signaling of adult cardiomyocytes is not fully known. We used ß-adrenergic receptor (ß-AR) signaling as a prototype to determine the evolution of signaling component expression and function during hiPSC-CM maturation. In "early" hiPSC-CMs (less than or equal to d 30), ß2-ARs are a primary source of cAMP/PKA signaling. With longer culture, ß1-AR signaling increases: from 0% of cAMP generation at d 30 to 56.8 ± 6.6% by d 60. PKA signaling shows a similar increase: 15.7 ± 5.2% (d 30), 49.8 ± 0.5% (d 60), and 71.0 ± 6.1% (d 90). cAMP generation increases 9-fold from d 30 to 60, with enhanced coupling to remodeling pathways (e.g., Akt and Ca(2+)/calmodulin-dependent protein kinase type II) and development of caveolin-mediated signaling compartmentalization. By contrast, cardiotoxicity induced by chronic ß-AR stimulation, a major component of heart failure, develops much later: 5% cell death at d 30vs 55% at d 90. Moreover, ß-AR maturation can be accelerated by biomechanical stimulation. The differential maturation of ß-AR functionalvs remodeling signaling in hiPSC-CMs has important implications for their use in disease modeling and drug testing. We propose that assessment of signaling be added to the indices of phenotypic maturation of hiPSC-CMs.-Jung, G., Fajardo, G., Ribeiro, A. J. S., Kooiker, K. B., Coronado, M., Zhao, M., Hu, D.-Q., Reddy, S., Kodo, K., Sriram, K., Insel, P. A., Wu, J. C., Pruitt, B. L., Bernstein, D. Time-dependent evolution of functionalvs remodeling signaling in induced pluripotent stem cell-derived cardiomyocytes and induced maturation with biomechanical stimulation.


Asunto(s)
Diferenciación Celular/fisiología , Células Madre Pluripotentes Inducidas/citología , Miocitos Cardíacos/citología , Transducción de Señal/fisiología , Fenómenos Biomecánicos , Calcio/metabolismo , Diferenciación Celular/genética , Células Cultivadas , AMP Cíclico/metabolismo , Perfilación de la Expresión Génica , Células HEK293 , Humanos , Immunoblotting , Células Madre Pluripotentes Inducidas/metabolismo , Microscopía Confocal , Miocitos Cardíacos/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Receptores Adrenérgicos beta 1/genética , Receptores Adrenérgicos beta 1/metabolismo , Receptores Adrenérgicos beta 2/genética , Receptores Adrenérgicos beta 2/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal/genética , Factores de Tiempo
10.
J Am Heart Assoc ; 13(3): e029427, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38293915

RESUMEN

BACKGROUND: The right ventricle (RV) is at risk in patients with complex congenital heart disease involving right-sided obstructive lesions. We have shown that capillary rarefaction occurs early in the pressure-loaded RV. Here we test the hypothesis that microRNA (miR)-34a, which is induced in RV hypertrophy and RV failure (RVF), blocks the hypoxia-inducible factor-1α-vascular endothelial growth factor (VEGF) axis, leading to the attenuated angiogenic response and increased susceptibility to RV failure. METHODS AND RESULTS: Mice underwent pulmonary artery banding to induce RV hypertrophy and RVF. Capillary rarefaction occurred immediately. Although hypoxia-inducible factor-1α expression increased (0.12±0.01 versus 0.22±0.03, P=0.05), VEGF expression decreased (0.61±0.03 versus 0.22±0.05, P=0.01). miR-34a expression was most upregulated in fibroblasts (4-fold), but also in cardiomyocytes and endothelial cells (2-fold). Overexpression of miR-34a in endothelial cells increased cell senescence (10±3% versus 22±2%, P<0.05) by suppressing sirtulin 1 expression, and decreased tube formation by 50% via suppression of hypoxia-inducible factor-1α, VEGF A, VEGF B, and VEGF receptor 2. miR-34a was induced by stretch, transforming growth factor-ß1, adrenergic stimulation, and hypoxia in cardiac fibroblasts and cardiomyocytes. In mice with RVF, locked nucleic acid-antimiR-34a improved RV shortening fraction and survival half-time and restored capillarity and VEGF expression. In children with congenital heart disease-related RVF, RV capillarity was decreased and miR-34a increased 5-fold. CONCLUSIONS: In summary, miR-34a from fibroblasts, cardiomyocytes, and endothelial cells mediates capillary rarefaction by suppressing the hypoxia-inducible factor-1α-VEGF axis in RV hypertrophy/RVF, raising the potential for anti-miR-34a therapeutics in patients with at-risk RVs.


Asunto(s)
Cardiopatías Congénitas , Insuficiencia Cardíaca , MicroARNs , Rarefacción Microvascular , Niño , Humanos , Ratones , Animales , Factor A de Crecimiento Endotelial Vascular/metabolismo , Células Endoteliales/metabolismo , Angiogénesis , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Rarefacción Microvascular/metabolismo , Insuficiencia Cardíaca/metabolismo , Hipertrofia Ventricular Derecha , Miocitos Cardíacos/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Cardiopatías Congénitas/metabolismo
11.
J Mol Cell Cardiol ; 63: 155-64, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23920331

RESUMEN

Beta adrenergic receptor (ß-AR) subtypes act through diverse signaling cascades to modulate cardiac function and remodeling. Previous in vitro studies suggest that ß1-AR signaling is cardiotoxic whereas ß2-AR signaling is cardioprotective, and may be the case during ischemia/reperfusion in vivo. The objective of this study was to assess whether ß2-ARs also play a cardioprotective role in the pathogenesis of non-ischemic forms of cardiomyopathy. To dissect the role of ß1 vs ß2-ARs in modulating MLP (Muscle LIM Protein) cardiomyopathy, we crossbred MLP-/- with ß1-/- or ß2-/- mice. Deletion of the ß2-AR improved survival, cardiac function, exercise capacity and myocyte shortening; by contrast haploinsufficency of the ß1-AR reduced survival. Pathologic changes in Ca(2+) handling were reversed in the absence of ß2-ARs: peak Ca(2+) and SR Ca(2+) were decreased in MLP-/- and ß1+/-/MLP-/- but restored in ß2-/-MLP-/-. These changes were associated with reversal of alterations in troponin I and phospholamban phosphorylation. Gi inhibition increased peak and baseline Ca(2+), recapitulating changes observed in the ß2-/-/MLP-/-. The L-type Ca(2+) blocker verapamil significantly decreased cardiac function in ß2-/-MLP-/- vs WT. We next tested if the protective effects of ß2-AR ablation were unique to the MLP model using TAC-induced heart failure. Similar to MLP, ß2-/- mice demonstrated delayed progression of heart failure with restoration of myocyte shortening and peak Ca(2+) and Ca(2+) release. Deletion of ß2-ARs prevents the development of MLP-/- cardiomyopathy via positive modulation of Ca(2+) due to removal of inhibitory Gi signaling and increased phosphorylation of troponin I and phospholamban. Similar effects were seen after TAC. Unlike previous models where ß2-ARs were found to be cardioprotective, in these two models, ß2-AR signaling appears to be deleterious, potentially through negative regulation of Ca(2+) dynamics.


Asunto(s)
Cardiomiopatías/genética , Eliminación de Gen , Receptores Adrenérgicos beta 2/genética , Antagonistas de Receptores Adrenérgicos beta 2/farmacología , Animales , Calcio/metabolismo , Cardiomiopatías/metabolismo , Cardiomiopatías/mortalidad , Cardiomiopatías/patología , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Acoplamiento Excitación-Contracción/efectos de los fármacos , Acoplamiento Excitación-Contracción/genética , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/mortalidad , Insuficiencia Cardíaca/patología , Proteínas con Dominio LIM/genética , Proteínas con Dominio LIM/metabolismo , Ratones , Ratones Noqueados , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Receptores Adrenérgicos beta 2/metabolismo
12.
Am J Physiol Heart Circ Physiol ; 305(4): H551-62, 2013 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-23729213

RESUMEN

Alterations in the ubiquitin-proteasome system (UPS) have been described in left ventricular hypertrophy and failure, although results have been inconsistent. The role of the UPS in right ventricular (RV) hypertrophy (RVH) and RV failure (RVF) is unknown. Given the greater percent increase in RV mass associated with RV afterload stress, as present in many congenital heart lesions, we hypothesized that alterations in the UPS could play an important role in RVH/RVF. UPS expression and activity were measured in the RV from mice with RVH/RVF secondary to pulmonary artery constriction (PAC). Epoxomicin and MG132 were used to inhibit the proteasome, and overexpression of the 11S PA28α subunit was used to activate the proteasome. PAC mice developed RVH (109.3% increase in RV weight to body weight), RV dilation with septal shift, RV dysfunction, and clinical RVF. Proteasomal function (26S ß5 chymotrypsin-like activity) was decreased 26% (P < 0.05). Protein expression of 19S subunit Rpt5 (P < 0.05), UCHL1 deubiquitinase (P < 0.0001), and Smurf1 E3 ubiquitin ligase (P < 0.01) were increased, as were polyubiquitinated proteins (P < 0.05) and free-ubiquitins (P = 0.05). Pro-apoptotic Bax was increased (P < 0.0001), whereas anti-apoptotic Bcl-2 decreased (P < 0.05), resulting in a sixfold increase in the Bax/Bcl-2 ratio. Proteasomal inhibition did not accelerate RVF. However, proteasome enhancement by cardiac-specific proteasome overexpression partially improved survival. Proteasome activity is decreased in RVH/RVF, associated with upregulation of key UPS regulators and pro-apoptotic signaling. Enhancement of proteasome function partially attenuates RVF, suggesting that UPS dysfunction contributes to RVF.


Asunto(s)
Insuficiencia Cardíaca/enzimología , Hipertrofia Ventricular Derecha/enzimología , Miocardio/enzimología , Complejo de la Endopetidasa Proteasomal/metabolismo , Transducción de Señal , Ubiquitina/metabolismo , Disfunción Ventricular Derecha/enzimología , Animales , Apoptosis/efectos de los fármacos , Constricción , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Terapia Genética , Insuficiencia Cardíaca/etiología , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/patología , Insuficiencia Cardíaca/fisiopatología , Insuficiencia Cardíaca/prevención & control , Hemodinámica/efectos de los fármacos , Hipertrofia Ventricular Derecha/etiología , Hipertrofia Ventricular Derecha/genética , Hipertrofia Ventricular Derecha/patología , Hipertrofia Ventricular Derecha/fisiopatología , Hipertrofia Ventricular Derecha/prevención & control , Masculino , Ratones , Ratones Transgénicos , Complejo de la Endopetidasa Proteasomal/genética , Inhibidores de Proteasoma/farmacología , Arteria Pulmonar/fisiopatología , Arteria Pulmonar/cirugía , Transducción de Señal/efectos de los fármacos , Factores de Tiempo , Disfunción Ventricular Derecha/etiología , Disfunción Ventricular Derecha/genética , Disfunción Ventricular Derecha/patología , Disfunción Ventricular Derecha/fisiopatología , Disfunción Ventricular Derecha/prevención & control , Función Ventricular Derecha/efectos de los fármacos
13.
Am J Physiol Heart Circ Physiol ; 304(10): H1314-27, 2013 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-23504182

RESUMEN

Pulmonary insufficiency (PI) is a common long-term sequel after repair of tetralogy of Fallot, causing progressive right ventricular (RV) dilation and failure. We describe the physiologic and molecular characteristics of the first murine model of RV volume overload. PI was created by entrapping the pulmonary valve leaflets with sutures. Imaging, catheterization, and exercise testing were performed at 1, 3, and 6 mo and compared with sham controls. RNA from the RV free wall was hybridized to Agilent whole genome oligonucleotide microarrays. Volume overload resulted in RV enlargement, decreased RV outflow tract shortening fraction at 1 mo followed by normalization at 3 and 6 mo (39 ± 2, 44 ± 2, and 41 ± 2 vs. 46 ± 3% in sham), early reversal of early and late diastolic filling velocities (E/A ratio) followed by pseudonormalization (0.87 ± 0.08, 0.82 ± 0.08, and 0.96 ± 0.08 vs. 1.04 ± 0.03; P < 0.05), elevated end-diastolic pressure (7.6 ± 0.7, 6.9 ± 0.8, and 7 ± 0.5 vs. 2.7 ± 0.2 mmHg; P < 0.05), and decreased exercise duration (26 ± 0.4, 26 ± 1, and 22 ± 1.3 vs. 30 ± 1.1 min; P < 0.05). Subendocardial RV fibrosis was evident by 1 mo. At 1 mo, 372 genes were significantly downregulated. Mitochondrial pathways and G protein-coupled receptor signaling were the most represented categories. At 3 mo, 434 genes were upregulated and 307 downregulated. While many of the same pathways continued to be downregulated, TNF-α, transforming growth factor-ß(1) (TGF-ß(1)), p53-signaling, and extracellular matrix (ECM) remodeling transitioned from down- to upregulated. We describe a novel murine model of chronic RV volume overload recapitulating aspects of the clinical disease with gene expression changes suggesting early mitochondrial bioenergetic dysfunction, enhanced TGF-ß signaling, ECM remodeling, and apoptosis.


Asunto(s)
Disfunción Ventricular Derecha/metabolismo , Disfunción Ventricular Derecha/fisiopatología , Animales , Apoptosis , Western Blotting , Cateterismo Cardíaco , Constricción Patológica/fisiopatología , Ecocardiografía , Electrocardiografía , Femenino , Feto/metabolismo , Fibrosis , Expresión Génica/fisiología , Insuficiencia Cardíaca Diastólica/diagnóstico por imagen , Insuficiencia Cardíaca Diastólica/fisiopatología , Imagen por Resonancia Magnética , Masculino , Ratones , Células Musculares/patología , Miocardio/patología , Resistencia Física/fisiología , Esfuerzo Físico/fisiología , Embarazo , Arteria Pulmonar/fisiología , ARN/biosíntesis , ARN/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Volumen Sistólico/fisiología , Proteína p53 Supresora de Tumor/genética , Disfunción Ventricular Derecha/genética
14.
Biomed Microdevices ; 15(1): 171-81, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23007494

RESUMEN

Immature primary and stem cell-derived cardiomyocytes provide useful models for fundamental studies of heart development and cardiac disease, and offer potential for patient specific drug testing and differentiation protocols aimed at cardiac grafts. To assess their potential for augmenting heart function, and to gain insight into cardiac growth and disease, tissue engineers must quantify the contractile forces of these single cells. Currently, axial contractile forces of isolated adult heart cells can only be measured by two-point methods such as carbon fiber techniques, which cannot be applied to neonatal and stem cell-derived heart cells because they are more difficult to handle and lack a persistent shape. Here we present a novel axial technique for measuring the contractile forces of isolated immature cardiomyocytes. We overcome cell manipulation and patterning challenges by using a thermoresponsive sacrificial support layer in conjunction with arrays of widely separated elastomeric microposts. Our approach has the potential to be high-throughput, is functionally analogous to current gold-standard axial force assays for adult heart cells, and prescribes elongated cell shapes without protein patterning. Finally, we calibrate these force posts with piezoresistive cantilevers to dramatically reduce measurement error typical for soft polymer-based force assays. We report quantitative measurements of peak contractile forces up to 146 nN with post stiffness standard error (26 nN) far better than that based on geometry and stiffness estimates alone. The addition of sacrificial layers to future 2D and 3D cell culture platforms will enable improved cell placement and the complex suspension of cells across 3D constructs.


Asunto(s)
Fenómenos Mecánicos , Miocitos Cardíacos/citología , Análisis de Matrices Tisulares/métodos , Animales , Animales Recién Nacidos , Fenómenos Biomecánicos , Forma de la Célula , Células Madre Embrionarias/citología , Humanos , Ratas , Análisis de Matrices Tisulares/instrumentación
15.
Arterioscler Thromb Vasc Biol ; 32(1): 92-102, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22034515

RESUMEN

OBJECTIVE: Clinical trials of bone marrow-derived stem cell therapy for the heart have yielded variable results. The basic mechanism(s) that underlies their potential efficacy remains unknown. In the present study, we evaluated the survival kinetics, transcriptional response, and functional outcome of intramyocardial bone marrow mononuclear cell (BMMC) transplantation for cardiac repair in a murine myocardial infarction model. METHODS AND RESULTS: We used bioluminescence imaging and high-throughput transcriptional profiling to evaluate the in vivo survival kinetics and gene expression changes of transplanted BMMCs after their engraftment into ischemic myocardium. Our results demonstrate short-lived survival of cells following transplant, with less than 1% of cells surviving by 6 weeks posttransplantation. Moreover, transcriptomic analysis of BMMCs revealed nonspecific upregulation of various cell regulatory genes, with a marked downregulation of cell differentiation and maturation pathways. BMMC therapy caused limited improvement of heart function as assessed by echocardiography, invasive hemodynamics, and positron emission tomography. Histological evaluation of cell fate further confirmed findings of the in vivo cell tracking and transcriptomic analysis. CONCLUSIONS: Collectively, these data suggest that BMMC therapy, in its present iteration, may be less efficacious than once thought. Additional refinement of existing cell delivery protocols should be considered to induce better therapeutic efficacy.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Isquemia Miocárdica/terapia , Animales , Supervivencia Celular , Ecocardiografía , Femenino , Perfilación de la Expresión Génica , Genes Reporteros , Células Madre Hematopoyéticas/metabolismo , Células Madre Hematopoyéticas/patología , Humanos , Masculino , Ratones , Ratones Transgénicos , Isquemia Miocárdica/genética , Isquemia Miocárdica/patología , Isquemia Miocárdica/fisiopatología , Tomografía de Emisión de Positrones , Factores de Tiempo
16.
Physiol Genomics ; 44(10): 562-75, 2012 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-22454450

RESUMEN

MicroRNAs (miRs) are small, noncoding RNAs that are emerging as crucial regulators of cardiac remodeling in left ventricular hypertrophy (LVH) and failure (LVF). However, there are no data on their role in right ventricular hypertrophy (RVH) and failure (RVF). This is a critical question given that the RV is uniquely at risk in patients with congenital right-sided obstructive lesions and in those with systemic RVs. We have developed a murine model of RVH and RVF using pulmonary artery constriction (PAC). miR microarray analysis of RV from PAC vs. control demonstrates altered miR expression with gene targets associated with cardiomyocyte survival and growth during hypertrophy (miR 199a-3p) and reactivation of the fetal gene program during heart failure (miR-208b). The transition from hypertrophy to heart failure is characterized by apoptosis and fibrosis (miRs-34, 21, 1). Most are similar to LVH/LVF. However, there are several key differences between RV and LV: four miRs (34a, 28, 148a, and 93) were upregulated in RVH/RVF that are downregulated or unchanged in LVH/LVF. Furthermore, there is a corresponding downregulation of their putative target genes involving cell survival, proliferation, metabolism, extracellular matrix turnover, and impaired proteosomal function. The current study demonstrates, for the first time, alterations in miRs during the process of RV remodeling and the gene regulatory pathways leading to RVH and RVF. Many of these alterations are similar to those in the afterload-stressed LV. miRs differentially regulated between the RV and LV may contribute to the RVs increased susceptibility to heart failure.


Asunto(s)
Perfilación de la Expresión Génica , Insuficiencia Cardíaca/genética , Hipertrofia Ventricular Derecha/genética , MicroARNs/genética , Animales , Western Blotting , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Análisis por Conglomerados , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/patología , Humanos , Hipertrofia Ventricular Derecha/metabolismo , Hipertrofia Ventricular Derecha/patología , Masculino , Ratones , Análisis de Secuencia por Matrices de Oligonucleótidos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
17.
Biomedicines ; 10(6)2022 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-35740401

RESUMEN

Alterations in mitochondrial function and morphology are critical adaptations to cardiovascular stress, working in concert in an attempt to restore organelle-level and cellular-level homeostasis. Processes that alter mitochondrial morphology include fission, fusion, mitophagy, and biogenesis, and these interact to maintain mitochondrial quality control. Not all cardiovascular stress is pathologic (e.g., ischemia, pressure overload, cardiotoxins), despite a wealth of studies to this effect. Physiological stress, such as that induced by aerobic exercise, can induce morphologic adaptations that share many common pathways with pathological stress, but in this case result in improved mitochondrial health. Developing a better understanding of the mechanisms underlying alterations in mitochondrial quality control under diverse cardiovascular stressors will aid in the development of pharmacologic interventions aimed at restoring cellular homeostasis.

18.
J Mol Cell Cardiol ; 51(5): 781-9, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21756913

RESUMEN

ß-adrenergic receptors (ß-ARs) modulate cardiotoxicity/cardioprotection through crosstalk with multiple signaling pathways. We have previously shown that ß2-ARs are cardioprotective during exposure to oxidative stress induced by doxorubicin (DOX). DOX cardiotoxicity is mediated in part through a Ca(2+)-dependent opening of the mitochondrial permeability transition (MPT), however the signals linking a cell surface receptor like the ß2-AR to regulators of mitochondrial function are not clear. The objective of this study was to assess mechanisms of crosstalk between ß2-ARs and mitochondrial cell death pathways. DOX administered to WT mice resulted in no acute mortality, however 85% of ß2-/- mice died within 30 min. Several pro- and anti-survival pathways were altered. The pro-survival kinase, εPKC, was decreased by 64% in ß2-/- after DOX vs WT (p<0.01); the εPKC activator ψεRACK partially rescued these mice (47% reduction in mortality). Activity of the pro-survival kinase Akt decreased by 76% in ß2-/- after DOX vs WT (p<0.01). The α1-antagonist prazosin restored Akt activity to normal and also partially reversed the mortality (45%). Deletion of the ß2-AR increased rate of Ca(2+) release by 75% and peak [Ca(2+)](i) by 20% respectively in isolated cardiomyocytes; the Ca(2+) channel blocker verapamil also partially rescued the ß2-/- (26%). Mitochondrial architecture was disrupted and complex I and II activities decreased by 40.9% and 34.6% respectively after DOX only in ß2-/-. The MPT blocker cyclosporine reduced DOX mortality by 41% and prazosin plus cyclosporine acted synergistically to decrease mortality by 85%. ß2-ARs activate pro-survival kinases and attenuate mitochondrial dysfunction during oxidative stress; absence of ß2-ARs enhances cardiotoxicity via negative regulation of survival kinases and enhancement of intracellular Ca(2+), thus predisposing the mitochondria to opening of the MPT.


Asunto(s)
Calcio/metabolismo , Cardiomiopatías/metabolismo , Doxorrubicina/efectos adversos , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Miocitos Cardíacos/metabolismo , Receptores Adrenérgicos beta 2/metabolismo , Transducción de Señal , Antagonistas de Receptores Adrenérgicos alfa 1/farmacología , Animales , Apoptosis/efectos de los fármacos , Bloqueadores de los Canales de Calcio/farmacología , Cardiomiopatías/tratamiento farmacológico , Cardiomiopatías/genética , Cardiomiopatías/mortalidad , Cardiomiopatías/fisiopatología , Ciclosporina/farmacología , Doxorrubicina/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Masculino , Ratones , Ratones Noqueados , Mitocondrias/efectos de los fármacos , Mitocondrias/genética , Proteínas de Transporte de Membrana Mitocondrial/antagonistas & inhibidores , Poro de Transición de la Permeabilidad Mitocondrial , Miocitos Cardíacos/citología , Miocitos Cardíacos/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/genética , Prazosina/farmacología , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Tasa de Supervivencia , Verapamilo/farmacología
19.
J Mol Cell Cardiol ; 51(6): 980-7, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21920368

RESUMEN

We previously found that in the hearts of hypertensive Dahl salt-sensitive rats, ßIIPKC levels increase during the transition from compensated cardiac hypertrophy to cardiac dysfunction. Here we showed that a six-week treatment of these hypertensive rats with a ßIIPKC-specific inhibitor, ßIIV5-3, prolonged their survival by at least 6weeks, suppressed myocardial fibrosis and inflammation, and delayed the transition from compensated hypertrophy to cardiac dysfunction. In addition, changes in the levels of the Ca(2+)-handling proteins, SERCA2 and the Na(+)/Ca(2+) exchanger, as well as troponin I phosphorylation, seen in the control-treated hypertensive rats were not observed in the ßΙΙPKC-treated rats, suggesting that ßΙΙPKC contributes to the regulation of calcium levels in the myocardium. In contrast, treatment with the selective inhibitor of ßIPKC, an alternative spliced form of ßIIPKC, had no beneficial effects in these rats. We also found that ßIIV5-3, but not ßIV5-3, improved calcium handling in isolated rat cardiomyocytes and enhanced contractility in isolated rat hearts. In conclusion, our data using an in vivo model of cardiac dysfunction (late-phase hypertrophy), suggest that ßIIPKC contributes to the pathology associated with heart failure and thus an inhibitor of ßIIPKC may be a potential treatment for this disease.


Asunto(s)
Cardiomegalia/enzimología , Cardiomegalia/prevención & control , Péptidos/farmacología , Proteína Quinasa C/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , Secuencia de Aminoácidos , Animales , Calcio/metabolismo , Cardiomegalia/mortalidad , Cardiomiopatías/metabolismo , Cardiomiopatías/patología , Modelos Animales de Enfermedad , Fibrosis , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/mortalidad , Insuficiencia Cardíaca/prevención & control , Masculino , Contracción Miocárdica/efectos de los fármacos , Miocardio/metabolismo , Miocardio/patología , Miocitos Cardíacos/metabolismo , Proteína Quinasa C beta , Ratas , Ratas Endogámicas Dahl , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Intercambiador de Sodio-Calcio/metabolismo
20.
Am J Physiol Heart Circ Physiol ; 301(4): H1461-70, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21705675

RESUMEN

In isolated myocytes, hypertrophy induced by norepinephrine is mediated via α(1)-adrenergic receptors (ARs) and not ß-ARs. However, mice with deletions of both major cardiac α(1)-ARs still develop hypertrophy in response to pressure overload. Our purpose was to better define the role of ß-AR subtypes in regulating cardiac hypertrophy in vivo, important given the widespread clinical use of ß-AR antagonists and the likelihood that patients treated with these agents could develop conditions of further afterload stress. Mice with deletions of ß(1), ß(2), or both ß(1)- and ß(2)-ARs were subjected to transverse aortic constriction (TAC). After 3 wk, ß(1)(-/-) showed a 21% increase in heart to body weight vs. sham controls, similar to wild type, whereas ß(2)(-/-) developed exaggerated (49% increase) hypertrophy. Only when both ß-ARs were ablated (ß(1)ß(2)(-/-)) was hypertrophy totally abolished. Cardiac function was preserved in all genotypes. Several known inhibitors of cardiac hypertrophy (FK506 binding protein 5, thioredoxin interacting protein, and S100A9) were upregulated in ß(1)ß(2)(-/-) compared with the other genotypes, whereas transforming growth factor-ß(2), a positive mediator of hypertrophy was upregulated in all genotypes except the ß(1)ß(2)(-/-). In contrast to recent reports suggesting that angiogenesis plays a critical role in regulating cardiac hypertrophy-induced heart failure, we found no evidence that angiogenesis or its regulators (VEGF, Hif1α, and p53) play a role in compensated cardiac hypertrophy. Pressure overload hypertrophy in vivo is dependent on a coordination of signaling through both ß(1)- and ß(2)-ARs, mediated through several key cardiac remodeling pathways. Angiogenesis is not a prerequisite for compensated cardiac hypertrophy.


Asunto(s)
Cardiomegalia/fisiopatología , Corazón/fisiopatología , Hipertensión/fisiopatología , Receptores Adrenérgicos beta/fisiología , Inductores de la Angiogénesis/metabolismo , Animales , Aorta Torácica/fisiología , Presión Sanguínea/fisiología , Cardiomegalia/etiología , Cardiomegalia/genética , Constricción Patológica/fisiopatología , Electrocardiografía , Estudio de Asociación del Genoma Completo , Insuficiencia Cardíaca/etiología , Insuficiencia Cardíaca/fisiopatología , Hipertensión/complicaciones , Hipertensión/genética , Masculino , Ratones , Ratones Noqueados , Análisis por Micromatrices , Adhesión en Parafina , ARN/biosíntesis , ARN/genética , Receptores Adrenérgicos beta/genética , Receptores Adrenérgicos beta 1/genética , Receptores Adrenérgicos beta 1/fisiología , Receptores Adrenérgicos beta 2/genética , Receptores Adrenérgicos beta 2/fisiología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal/genética , Transducción de Señal/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA