Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Nature ; 583(7814): 139-144, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32461691

RESUMEN

MicroRNAs (miRNAs) regulate the levels of translation of messenger RNAs (mRNAs). At present, the major parameter that can explain the selection of the target mRNA and the efficiency of translation repression is the base pairing between the 'seed' region of the miRNA and its counterpart mRNA1. Here we use R1ρ relaxation-dispersion nuclear magnetic resonance2 and molecular simulations3 to reveal a dynamic switch-based on the rearrangement of a single base pair in the miRNA-mRNA duplex-that elongates a weak five-base-pair seed to a complete seven-base-pair seed. This switch also causes coaxial stacking of the seed and supplementary helix fitting into human Argonaute 2 protein (Ago2), reminiscent of an active state in prokaryotic Ago4,5. Stabilizing this transient state leads to enhanced repression of the target mRNA in cells, revealing the importance of this miRNA-mRNA structure. Our observations tie together previous findings regarding the stepwise miRNA targeting process from an initial 'screening' state to an 'active' state, and unveil the role of the RNA duplex beyond the seed in Ago2.


Asunto(s)
Emparejamiento Base , MicroARNs/genética , ARN Mensajero/genética , Sirtuina 1/genética , Proteínas Argonautas/metabolismo , Sitios de Unión , Células HEK293 , Humanos , Modelos Moleculares , Complejo Silenciador Inducido por ARN/metabolismo
2.
Chem Rev ; 123(3): 1040-1102, 2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36622423

RESUMEN

Glycans, carbohydrate molecules in the realm of biology, are present as biomedically important glycoconjugates and a characteristic aspect is that their structures in many instances are branched. In determining the primary structure of a glycan, the sugar components including the absolute configuration and ring form, anomeric configuration, linkage(s), sequence, and substituents should be elucidated. Solution state NMR spectroscopy offers a unique opportunity to resolve all these aspects at atomic resolution. During the last two decades, advancement of both NMR experiments and spectrometer hardware have made it possible to unravel carbohydrate structure more efficiently. These developments applicable to glycans include, inter alia, NMR experiments that reduce spectral overlap, use selective excitations, record tilted projections of multidimensional spectra, acquire spectra by multiple receivers, utilize polarization by fast-pulsing techniques, concatenate pulse-sequence modules to acquire several spectra in a single measurement, acquire pure shift correlated spectra devoid of scalar couplings, employ stable isotope labeling to efficiently obtain homo- and/or heteronuclear correlations, as well as those that rely on dipolar cross-correlated interactions for sequential information. Refined computer programs for NMR spin simulation and chemical shift prediction aid the structural elucidation of glycans, which are notorious for their limited spectral dispersion. Hardware developments include cryogenically cold probes and dynamic nuclear polarization techniques, both resulting in enhanced sensitivity as well as ultrahigh field NMR spectrometers with a 1H NMR resonance frequency higher than 1 GHz, thus improving resolution of resonances. Taken together, the developments have made and will in the future make it possible to elucidate carbohydrate structure in great detail, thereby forming the basis for understanding of how glycans interact with other molecules.

3.
Molecules ; 27(8)2022 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-35458600

RESUMEN

An immunoadjuvant preparation (named Fraction B) was obtained from the aqueous extract of Quillaja brasiliensis leaves, and further fractionated by consecutive separations with silica flash MPLC and reverse phase HPLC. Two compounds were isolated, and their structures elucidated using a combination of NMR spectroscopy and mass spectrometry. One of these compounds is a previously undescribed triterpene saponin (Qb1), which is an isomer of QS-21, the unique adjuvant saponin employed in human vaccines. The other compound is a triterpene saponin previously isolated from Quillaja saponaria bark, known as S13. The structure of Qb1 consists of a quillaic acid residue substituted with a ß-d-Galp-(1→2)-[ß-d-Xylp-(1→3)]-ß-d-GlcpA trisaccharide at C3, and a ß-d-Xylp-(1→4)-α-l-Rhap-(1→2)-[α-l-Arap-(1→3)]-ß-d-Fucp moiety at C28. The oligosaccharide at C28 was further substituted at O4 of the fucosyl residue with an acyl group capped with a ß-d-Xylp residue.


Asunto(s)
Saponinas , Triterpenos , Adyuvantes Inmunológicos/química , Humanos , Espectroscopía de Resonancia Magnética , Espectrometría de Masas , Quillaja/química , Saponinas/química , Triterpenos/química
4.
Bioorg Med Chem ; 44: 116309, 2021 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-34293617

RESUMEN

Galectins, soluble lectins widely expressed intra- and extracellularly in different cell types, play major roles in deciphering the cellular glycocode. Galectin-1 (Gal-1), a prototype member of this family, presents a carbohydrate recognition domain (CRD) with specific affinity for ß-galactosides such as N-acetyllactosamine (ß-d-Galp-(1 â†’ 4)-d-GlcpNAc), and mediate numerous physiological and pathological processes. In this work, Gal-1 binding affinity for ß-(1 â†’ 6) galactosides, including ß-d-Galp-(1 â†’ 6)-ß-d-GlcpNAc-(1 â†’ 4)-d-GlcpNAc was evaluated, and their performance was compared to that of ß-(1 â†’ 4) and ß-(1 â†’ 3) galactosides. To this end, the trisaccharide ß-d-Galp-(1 â†’ 6)-ß-d-GlcpNAc-(1 â†’ 4)-d-GlcpNAc was enzymatically synthesized, purified and structurally characterized. To evaluate the affinity of Gal-1 for the galactosides, competitive solid phase assays (SPA) and isothermal titration calorimetry (ITC) studies were carried out. The experimental dissociation constants and binding energies obtained were compared to those calculated by molecular docking. These analyses evidenced the critical role of the glycosidic linkage between the terminal galactopyranoside residue and the adjacent monosaccharide, as galactosides bearing ß-(1 â†’ 6) glycosidic linkages showed dissociation constants six- and seven-fold higher than those involving ß-(1 â†’ 4) and ß-(1 â†’ 3) linkages, respectively. Moreover, docking experiments revealed the presence of hydrogen bond interactions between the N-acetyl group of the glucosaminopyranose moiety of the evaluated galactosides and specific amino acid residues of Gal-1, relevant for galectin-glycan affinity. Noticeably, the binding free energies (ΔGbindcalc) derived from the molecular docking were in good agreement with experimental values determined by ITC measurements (ΔGbindexp), evidencing a good correlation between theoretical and experimental approaches, which validates the in silico simulations and constitutes an important tool for the rational design of future optimized ligands.


Asunto(s)
Galactósidos/química , Galectina 1/química , Azúcares/química , Acetilación , Conformación de Carbohidratos , Humanos , Simulación del Acoplamiento Molecular
5.
European J Org Chem ; 2020(9): 1084-1092, 2020 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-34531701

RESUMEN

Bisthiazolidines (BTZ) are bicyclic compounds considered penicillin analogs that inhibit the full range of Metallo-ß-Lactamases (MBLs) and potentiate ß-lactam activity against resistant bacteria. Herein we present a new methodology to prepare 2-substituted bisthiazolidines by aldehyde exchange. Thirteen new bisthiazolidines were prepared using this methodology, with yields ranged from 31 to 75%. The reaction is based on in situ imines formation, which are able to exchange side chains. The reaction intermediates were studied based on NMR experiments and a key imine 1b-II could be detected in the reaction mixture. Furthermore, a DFT computational analysis was performed to gain insights into the reaction mechanism, allowing us to unveil the different pathways and their activation barriers within the synthetic route. The results suggest that the most favorable route involve the formation of the thiazolidine 1b-III by i) a N-assisted N-C bond cleavage, and ii) a thiol-mediated 5 endo-trig cyclization followed by a C-N bond cleavage. In contrast with previously reported evidence, the imine metathesis was discarded as a plausible pathway. Finally, the reaction of 1b-III with aldehyde 2a leads to bicycle 4a via the iminium ion 1b-V.

6.
Glycobiology ; 29(2): 179-187, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30346540

RESUMEN

The structure of the O-antigen polysaccharide (PS) from the Shiga-toxin producing Escherichia coli O63 has been elucidated using a combination of bioinformatics, component analyses and NMR spectroscopy. The O-antigen is comprised of tetrasaccharide repeating units with the following structure: →2)-ß-d-Quip3N(d-allo-ThrAc)-(1→2)-ß-d-Ribf-(1→4)-ß-d-Galp-(1→3)-α-d-GlcpNAc-(1→ in which the N-acetylated d-allo-threonine is amide-linked to position 3 of the 3-amino-3-deoxy-d-Quip sugar residue. The presence of a predicted flippase and polymerase encoded in the O63 gene cluster is consistent with the Wzx/Wzy biosynthetic pathway and consequently the biological repeating unit has likely an N-acetyl-d-glucosamine residue at its reducing end. A bioinformatics approach based on predictive glycosyltransferase function present in ECODAB (E. coli O-antigen database) suggested the structural element ß-d-Galp-(1→3)-d-GlcpNAc in the O-antigen. Notably, multiple gene sequence alignment of fdtA and qdtA from E. coli to that in E. coli O63 resulted in discrimination between the two, confirmation of the latter in E. coli O63, and consequently, together with qdtB, biosynthesis of dTDP-d-Quip3N. The E. coli O63 O-antigen polysaccharide differs in two aspects from that of E. coli O114 where the latter carries instead an l-serine residue, and the glycosidic linkage positions to and from the Quip3N residue are both changed. The structural characterization of the O63 antigen repeat supports the predicted functional assignment of the O-antigen cluster genes.


Asunto(s)
Escherichia coli/química , Antígenos O/química , Conformación de Carbohidratos , Escherichia coli/crecimiento & desarrollo
7.
J Biol Inorg Chem ; 23(8): 1265-1281, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30194536

RESUMEN

Searching for prospective vanadium-based agents against Trypanosoma cruzi, the parasite causing Chagas disease, four new [VVO(8HQ-H)(L-2H)] compounds, where 8HQ is 8-hydroxyquinoline and L are tridentate salicylaldehyde semicarbazone derivatives L1-L4, were synthesized and characterized in the solid state and in solution. The compounds were evaluated on T. cruzi epimastigotes (CL Brener) as well as on VERO cells, as mammalian cell model. Compounds showed activity against T. cruzi (IC50 6.2-10.5 µM) of the same order than Nifurtimox and 8HQ, and a four- to sevenfold activity increase with respect to the free semicarbazones. For comparison, [VVO2(L-H)] series was prepared and the new [VVO2(L3-H)] was fully characterized. They showed negligible activity and low selectivity towards the parasite. The inclusion of 8HQ as ligand in [VVO(8HQ-H)(L-2H)] compounds led to good activities and increased selectivity towards the parasite with respect to 8HQ. 51V NMR experiments, performed to get insight into the nature of the active species, suggested partial decomposition of the compounds in solution to [VVO2(L-H)] and 8HQ. Depending on the dose, the compounds act as trypanocide or trypanostatic. A high uptake of vanadium in the parasites (58.51-88.9% depending on dose) and a preferential accumulation in the soluble protein fraction of the parasite was determined. Treated parasites do not seem to show a late apoptotic/necrotic phenotype suggesting a different cell death mechanism. In vivo toxicity study on zebrafish model showed no toxicity up to a 25 µM concentration of [VVO(8HQ-H)(L1-2H)]. These compounds could be considered prospective anti-T. cruzi agents that deserve further research.


Asunto(s)
Complejos de Coordinación/farmacología , Tripanocidas/farmacología , Trypanosoma cruzi/efectos de los fármacos , Vanadio/química , Animales , Apoptosis/efectos de los fármacos , Chlorocebus aethiops , Complejos de Coordinación/síntesis química , Complejos de Coordinación/química , Complejos de Coordinación/toxicidad , Interacciones Hidrofóbicas e Hidrofílicas , Estructura Molecular , Pruebas de Sensibilidad Parasitaria , Tripanocidas/síntesis química , Tripanocidas/química , Tripanocidas/toxicidad , Células Vero , Pez Cebra
8.
J Biol Chem ; 291(14): 7727-41, 2016 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-26867577

RESUMEN

The structures of the lipooligosaccharides fromBrucella melitensismutants affected in the WbkD and ManBcoreproteins have been fully characterized using NMR spectroscopy. The results revealed that disruption ofwbkDgives rise to a rough lipopolysaccharide (R-LPS) with a complete core structure (ß-d-Glcp-(1→4)-α-Kdop-(2→4)[ß-d-GlcpN-(1→6)-ß-d-GlcpN-(1→4)[ß-d-GlcpN-(1→6)]-ß-d-GlcpN-(1→3)-α-d-Manp-(1→5)]-α-Kdop-(2→6)-ß-d-GlcpN3N4P-(1→6)-α-d-GlcpN3N1P), in addition to components lacking one of the terminal ß-d-GlcpN and/or the ß-d-Glcpresidues (48 and 17%, respectively). These structures were identical to those of the R-LPS fromB. melitensisEP, a strain simultaneously expressing both smooth and R-LPS, also studied herein. In contrast, disruption ofmanBcoregives rise to a deep-rough pentasaccharide core (ß-d-Glcp-(1→4)-α-Kdop-(2→4)-α-Kdop-(2→6)-ß-d-GlcpN3N4P-(1→6)-α-d-GlcpN3N1P) as the major component (63%), as well as a minor tetrasaccharide component lacking the terminal ß-d-Glcpresidue (37%). These results are in agreement with the predicted functions of the WbkD (glycosyltransferase involved in the biosynthesis of the O-antigen) and ManBcoreproteins (phosphomannomutase involved in the biosynthesis of a mannosyl precursor needed for the biosynthesis of the core and O-antigen). We also report that deletion ofB. melitensis wadCremoves the core oligosaccharide branch not linked to the O-antigen causing an increase in overall negative charge of the remaining LPS inner section. This is in agreement with the mannosyltransferase role predicted for WadC and the lack of GlcpN residues in the defective core oligosaccharide. Despite carrying the O-antigen essential inB. melitensisvirulence, the core deficiency in thewadCmutant structure resulted in a more efficient detection by innate immunity and attenuation, proving the role of the ß-d-GlcpN-(1→6)-ß-d-GlcpN-(1→4)[ß-d-GlcpN-(1→6)]-ß-d-GlcpN-(1→3)-α-d-Manp-(1→5) structure in virulence.


Asunto(s)
Brucella melitensis/metabolismo , Brucella melitensis/patogenicidad , Lipopolisacáridos/metabolismo , Factores de Virulencia/metabolismo , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Brucella melitensis/genética , Brucelosis/genética , Brucelosis/metabolismo , Secuencia de Carbohidratos , Femenino , Lipopolisacáridos/genética , Manosa-6-Fosfato Isomerasa/genética , Manosa-6-Fosfato Isomerasa/metabolismo , Ratones , Complejos Multienzimáticos/genética , Complejos Multienzimáticos/metabolismo , Nucleotidiltransferasas/genética , Nucleotidiltransferasas/metabolismo , Oligosacáridos/genética , Oligosacáridos/metabolismo , Factores de Virulencia/genética
9.
Glycobiology ; 24(5): 450-7, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24558268

RESUMEN

A computerized method that uses predicted functions of glycosyltransferases (GTs) in conjunction with unassigned NMR data has been developed for the structural elucidation of bacterial polysaccharides (PSs). In this approach, information about the action of GTs (consisting of possible sugar residues used as donors and/or acceptors, as well as the anomeric configuration and/or substitution position in the respective glycosidic linkages) is extracted from the Escherichia coli O-antigen database and is submitted, together with the unassigned NMR data, to the CASPER program. This time saving methodology, which alleviates the need for chemical analysis, was successfully implemented in the structural elucidation of the O-antigen PS of E. coli O59. The repeating unit of the O-specific chain was determined using the O-deacylated PS and has a branched structure, namely, →6)[α-d-GalpA3Ac/4Ac-(1 → 3)]-α-d-Manp-(1 → 3)-α-d-Manp-(1 → 3)-ß-d-Manp-(1 → 3)-α-d-GlcpNAc-(1→. The identification of the O-acetylation positions was efficiently performed by comparison of the (1)H,(13)C HSQC NMR spectra of the O-deacylated lipopolysaccharide and the lipid-free PS in conjunction with chemical shift predictions made by the CASPER program. The side-chain d-GalpA residue carries one equivalent of O-acetyl groups at the O-3 and O-4 positions distributed in the LPS in a 3:7 ratio, respectively. The presence of O-acetyl groups in the repeating unit of the E. coli O59 PS is consistent with the previously proposed acetyltransferase WclD in the O-antigen gene cluster.


Asunto(s)
Escherichia coli/química , Antígenos O/química , Conformación de Carbohidratos , Espectroscopía de Resonancia Magnética , Relación Estructura-Actividad
10.
Mol Microbiol ; 87(1): 112-31, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23163552

RESUMEN

Bacterial carbohydrate structures play a central role in mediating a variety of host-pathogen interactions. Glycans can either elicit protective immune response or lead to escape of immune surveillance by mimicking host structures. Lipopolysaccharide (LPS), a major component on the surface of Gram-negative bacteria, is composed of a lipid A-core and the O-antigen polysaccharide. Pathogens like Neisseria meningitidis expose a lipooligosaccharide (LOS), which outermost glycans mimick mammalian epitopes to avoid immune recognition. Lewis X (Galß1-4(Fucα1-3)GlcNAc) antigens of Helicobacter pylori or of the helminth Schistosoma mansoni modulate the immune response by interacting with receptors on human dendritic cells. In a glycoengineering approach we generate human carbohydrate structures on the surface of recombinant Gram-negative bacteria, such as Escherichia coli and Salmonella enterica sv. Typhimurium that lack O-antigen. A ubiquitous building block in mammalian N-linked protein glycans is Galß1-4GlcNAc, referred to as a type-2 N-acetyllactosamine, LacNAc, sequence. Strains displaying polymeric LacNAc were generated by introducing a combination of glycosyltransferases that act on modified lipid A-cores, resulting in efficient expression of the carbohydrate epitope on bacterial cell surfaces. The poly-LacNAc scaffold was used as an acceptor for fucosylation leading to polymers of Lewis X antigens. We analysed the distribution of the carbohydrate epitopes by FACS, microscopy and ELISA and confirmed engineered LOS containing LacNAc and Lewis X repeats by MALDI-TOF and NMR analysis. Glycoengineered LOS induced pro-inflammatory response in murine dendritic cells. These bacterial strains can thus serve as tools to analyse the role of defined carbohydrate structures in different biological processes.


Asunto(s)
Antígenos de Superficie/inmunología , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas de la Membrana Bacteriana Externa/metabolismo , Antígeno Lewis X/genética , Antígeno Lewis X/metabolismo , Animales , Células Dendríticas/inmunología , Células Dendríticas/microbiología , Disacáridos/inmunología , Escherichia coli/metabolismo , Helicobacter pylori/metabolismo , Interacciones Huésped-Patógeno , Antígeno Lewis X/inmunología , Lipopolisacáridos/inmunología , Ratones , Salmonella typhimurium/genética , Salmonella typhimurium/inmunología , Salmonella typhimurium/metabolismo , Schistosoma mansoni/metabolismo
11.
J Biomol NMR ; 59(2): 95-110, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24771296

RESUMEN

In this study, a set of nuclear magnetic resonance experiments, some of them commonly used in the study of (13)C-labeled proteins and/or nucleic acids, is applied for the structure determination of uniformly (13)C-enriched carbohydrates. Two model substances were employed: one compound of low molecular weight [(UL-(13)C)-sucrose, 342 Da] and one compound of medium molecular weight ((13)C-enriched O-antigenic polysaccharide isolated from Escherichia coli O142, ~10 kDa). The first step in this approach involves the assignment of the carbon resonances in each monosaccharide spin system using the anomeric carbon signal as the starting point. The (13)C resonances are traced using (13)C-(13)C correlations from homonuclear experiments, such as (H)CC-CT-COSY, (H)CC-NOESY, CC-CT-TOCSY and/or virtually decoupled (H)CC-TOCSY. Based on the assignment of the (13)C resonances, the (1)H chemical shifts are derived in a straightforward manner using one-bond (1)H-(13)C correlations from heteronuclear experiments (HC-CT-HSQC). In order to avoid the (1) J CC splitting of the (13)C resonances and to improve the resolution, either constant-time (CT) in the indirect dimension or virtual decoupling in the direct dimension were used. The monosaccharide sequence and linkage positions in oligosaccharides were determined using either (13)C or (1)H detected experiments, namely CC-CT-COSY, band-selective (H)CC-TOCSY, HC-CT-HSQC-NOESY or long-range HC-CT-HSQC. However, due to the short T2 relaxation time associated with larger polysaccharides, the sequential information in the O-antigen polysaccharide from E. coli O142 could only be elucidated using the (1)H-detected experiments. Exchanging protons of hydroxyl groups and N-acetyl amides in the (13)C-enriched polysaccharide were assigned by using HC-H2BC spectra. The assignment of the N-acetyl groups with (15)N at natural abundance was completed by using HN-SOFAST-HMQC, HNCA, HNCO and (13)C-detected (H)CACO spectra.


Asunto(s)
Carbohidratos/química , Resonancia Magnética Nuclear Biomolecular , Conformación de Carbohidratos , Secuencia de Carbohidratos , Isótopos de Carbono , Escherichia coli/inmunología , Antígenos O/química , Oligosacáridos/química , Polisacáridos/química , Protones , Temperatura
12.
Glycobiology ; 23(3): 354-62, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23193180

RESUMEN

The structure of the O-antigen polysaccharide (PS) of Escherichia coli O115 has been investigated using a combination of component analysis and 1D and 2D nuclear magnetic resonance (NMR) spectroscopy experiments. The repeating unit of the O-antigen was elucidated using the O-deacetylated PS and has the following branched pentasaccharide structure: →3)[ß-L-Rhap-(1 → 4)]-ß-D-GlcpNAc-(1 → 4)-α-D-GalpA-(1 → 3)-α-D-Manp-(1 → 3)-ß-D-GlcpNAc-(1→. Cross-peaks of low intensity, corresponding to a ß-L-Rhap-(1 → 4)-ß-D-GlcpNAc-(1→ structural element, were present in the NMR spectra and attributed to the terminal part of the PS; this information defines the biological repeating unit of the O-antigen by having a 3-substituted N-acetyl-D-glucosamine (GlcNAc) residue at its reducing end. Analysis of the NMR spectra of the native PS revealed O-acetyl groups distributed over different positions of the l-Rhap residue (∼0.70 per repeating unit) as well as at O-2 and O-3 of the D-GalpA residue (∼0.03 and ∼0.25 per repeating unit, respectively), which is in agreement with the presence of two acetyltransferases previously identified in the O-antigen gene cluster (Wang Q, Ruan X, Wei D, Hu Z, Wu L, Yu T, Feng L, Wang L. 2010. Mol Cell Probes. 24:286-290.). In addition, the four glycosyltransferases initially identified in the O-antigen gene cluster of E. coli O115 were analyzed using BLAST, and the function of two of them predicted on the basis of similarities with glycosyltransferases from Shigella dysenteriae type 5 and 12, as well as E. coli O58 and O152.


Asunto(s)
Escherichia coli/química , Antígenos O/química , Acetilglucosamina/química , Acetiltransferasas/genética , Conformación de Carbohidratos , Secuencia de Carbohidratos , Escherichia coli/enzimología , Escherichia coli/genética , Glicosiltransferasas/genética , Espectroscopía de Resonancia Magnética , Familia de Multigenes , Antígenos O/biosíntesis , Análisis de Secuencia de ADN
13.
Biomacromolecules ; 14(7): 2215-24, 2013 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-23721050

RESUMEN

Escherichia coli serogroup O5 comprises two different subgroups (O5ab and O5ac), which are indiscernible from the point of view of standard immunological serotyping. The structural similarities between the O-antigen polysaccharides (PSs) of these two strains are remarkable, with the only difference being the glycosidic linkage connecting the biological tetrasaccharide repeating units. In the present study, a combination of NMR spectroscopy and molecular modeling methods were used to elucidate the conformational preferences of these two PSs. The NMR study was based on the analysis of intra- and inter-residue proton-proton distances using NOE build-up curves. Molecular models of the repeating units and their extension to polysaccharides were obtained, taking into account the conformational flexibility as assessed by the force field applied and a genetic algorithm. The agreements between experimentally measured and calculated distances could only be obtained by considering an averaging of several low energy conformations observed in the molecular models.


Asunto(s)
Escherichia coli/inmunología , Antígenos O/química , Algoritmos , Conformación de Carbohidratos , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular
14.
J Am Chem Soc ; 134(10): 4521-4, 2012 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-22372538

RESUMEN

O-mannosyl glycans are known to play an important role in regulating the function of α-dystroglycan (α-DG), as defective glycosylation is associated with various phenotypes of congenital muscular dystrophy. Despite the well-established biological significance of these glycans, questions regarding their precise molecular function remain unanswered. Further biological investigation will require synthetic methods for the generation of pure samples of homogeneous glycopeptides with diverse sequences. Here we describe the first total syntheses of glycopeptides containing the tetrasaccharide NeuNAcα2-3Galß1-4GlcNAcß1-2Manα, which is reported to be the most abundant O-mannosyl glycan on α-DG. Our approach is based on biomimetic stepwise assembly from the reducing end and also gives access to the naturally occurring mono-, di-, and trisaccharide substructures. In addition to the total synthesis, we have developed a "one-pot" enzymatic cascade leading to the rapid synthesis of the target tetrasaccharide. Finally, solid-phase synthesis of the desired glycopeptides directly on a gold microarray platform is described.


Asunto(s)
Manosa/química , Péptidos/síntesis química , Secuencia de Aminoácidos , Biomimética , Secuencia de Carbohidratos , Cromatografía Líquida de Alta Presión , Glicosilación , Datos de Secuencia Molecular , Resonancia Magnética Nuclear Biomolecular , Péptidos/química , Soluciones
15.
Carbohydr Res ; 513: 108528, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35247641

RESUMEN

Carbohydrate structure can be elucidated or confirmed by using NMR spectroscopy as the prime technique. Prediction of 1H and 13C NMR chemical shifts by computational approaches makes this assignment process more efficient and the program CASPER can perform this task rapidly. It does so by relying on chemical shift data of mono-, di-, and trisaccharides. In order to improve accuracy and quality of these predictions we have assigned 1H and 13C NMR chemical shifts of 30 monosaccharides, 17 disaccharides, 10 trisaccharides and one tetrasaccharide; in total 58 compounds. Due to different rotamers, ring forms, α- and ß-anomeric forms and pD conditions this resulted in 74 1H and 13C NMR chemical shift data sets, all of which were refined using total line-shape analysis for the 1H resonances in order to obtain accurate chemical shifts. Subsequent NMR chemical shift predictions for three sialic acid-containing oligosaccharides, viz., GD1a, a disialyl-LNnT hexasaccharide and a polysialic acid-lactose decasaccharide, and NMR-based structural elucidations of two O-antigen polysaccharides from E. coli O174 were performed by the CASPER program (http://www.casper.organ.su.se/casper/) resulting in very good to excellent agreement between experimental and predicted data thereby demonstrating its utility for carbohydrate compounds that have been chemically or enzymatically synthesized, structurally modified or isolated from nature.


Asunto(s)
Escherichia coli/química , Resonancia Magnética Nuclear Biomolecular , Polisacáridos Bacterianos/química , Conformación de Carbohidratos , Isótopos de Carbono , Modelos Moleculares , Protones
16.
Biomacromolecules ; 12(11): 3851-5, 2011 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-21955217

RESUMEN

The structural analysis of polysaccharides requires that the sugar components and their absolute configurations are determined. We here show that this can be performed based on NMR spectroscopy by utilizing butanolysis with (+)- and (-)-2-butanol that gives the corresponding 2-butyl glycosides with characteristic (1)H and (13)C NMR chemical shifts. The subsequent computer-assisted structural determination by CASPER can then be based solely on NMR data in a fully automatic way as shown and implemented herein. The method is additionally advantageous in that reference data only have to be prepared once and from a user's point of view only the unknown sample has to be derivatized for use in CASPER.


Asunto(s)
Modelos Moleculares , Antígenos O/química , Conformación de Carbohidratos , Secuencia de Carbohidratos , Escherichia coli , Klebsiella pneumoniae , Espectroscopía de Resonancia Magnética , Datos de Secuencia Molecular , Estándares de Referencia , Análisis de Secuencia/métodos , Programas Informáticos
17.
Vet Med Sci ; 6(3): 606-611, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32023667

RESUMEN

Canine morbillivirus, also known as canine distemper virus (CDV), induces a contagious multisystemic disease caused by an enveloped RNA virus belonging to the genus Morbillivirus within the family Paramyxoviridae. CDV replicates readily in epithelial, nerve and lymphoid tissues; it is excreted in urine, feces, saliva, oral and nasal discharge; and its major route of entry for infection is through the respiratory system. Although the virus was originally believed to infect domestic dogs, new studies have shown that it can also naturally or experimentally infect non-domestic hosts. A recent blood test performed on a giant anteater (Myrmecophaga tridactyla) found Lentz inclusions in the animal's leucocytes. A rapid CDV test, an RT-PCR assay and pathology findings confirmed this report of canine morbillivirus in this species, which corresponds to the second report of CDV infection in the order Pilosa, family Myrmecophagidae in central west Brazil.


Asunto(s)
Virus del Moquillo Canino/aislamiento & purificación , Moquillo/virología , Euterios , Animales , Animales de Zoológico , Brasil
18.
Carbohydr Res ; 472: 1-15, 2019 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-30428394

RESUMEN

Galectins are a family of carbohydrate-recognizing proteins that by interacting with specific glycoepitopes can mediate important biological processes, including immune cell homeostasis and activation of tolerogenic circuits. Among the different members of this family, Galectin 1 and 3 have shown pro-tumorigenic effects, being overexpressed in numerous neoplasic diseases, proving to be relevant in tumor immune escape, tumor progression and resistance to drug-induced apoptosis. Thus, generation of specific glycosides that could inhibit their pro-tumorigenic ability by blocking their carbohydrate recognition domain is one of the current major challenges in the field. Considering that galectin-ligand binding strength is closely related to the ligand structure, analysis of this relationship provides valuable information for rational design of high-affinity ligands that could work as effective galectin inhibitors. Taking profit of the ability of glycosidases to catalyze transglycosylation reactions we achieved the enzymatic synthesis of ß-d-Galp-(1 → 6)-ß-d-Galp-(1 → 4)-d-Glcp(2), a mixture of ß-d-Galp-(1 → 6)-ß-d-Glcp-(1 → 4)-d-Glcp(5) and ß-d-Galp-(1 → 3)-ß-d-Glcp-(1 → 4)-d-Glcp(6), and finally benzyl ß-d-galactopyranoside (9), with reaction yields between 16 and 27%. All the galactosides were purified, and characterized using 1H and 13C nuclear magnetic resonance spectroscopy. Docking results performed between the synthesized compounds and human Galectin 1 (hGal-1) and human Galectin 3 (hGal-3) showed that the replacement of a glucose moiety linked to the terminal galactose with a galactose moiety, decreases the affinity for these galectins. Moreover, regarding the interglycosidic bond the most favorable ß-Gal linkage seems to be ß(1 → 4) followed by ß(1 → 3) and ß(1 → 6) for hGal-1, and ß(1 → 4) followed by ß(1 → 6) and ß(1 → 3) for hGal-3. These results were in accordance with the IC50 values obtained with in vitro solid phase inhibition assays. Therefore, docking results obtained in this work proved to be a very good approximation for predicting binding affinity of novel galactosides.


Asunto(s)
Galactósidos/biosíntesis , Galectinas/antagonistas & inhibidores , Glicósido Hidrolasas/metabolismo , Trisacáridos/biosíntesis , Sitios de Unión , Proteínas Sanguíneas , Espectroscopía de Resonancia Magnética con Carbono-13 , Galactósidos/química , Galactósidos/farmacología , Galectina 1/antagonistas & inhibidores , Galectina 1/química , Galectina 3/antagonistas & inhibidores , Galectina 3/química , Galectinas/química , Humanos , Modelos Moleculares , Simulación del Acoplamiento Molecular , Espectroscopía de Protones por Resonancia Magnética , Trisacáridos/química , Trisacáridos/farmacología
19.
Magn Reson Chem ; 46(1): 36-41, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18098230

RESUMEN

We present a detailed conformational study of a simplified synthetic analog of the bis-oxazole oxane fragment found in the cytostatic agents phorboxazole A and B based on results from NMR spectroscopy and molecular modeling simulations. Complete 1H and 13C resonance assignments for the bis-oxazole oxane system were carried out through the use of COSY, HSQC, HMBC, TOCSY, and HSQC-TOCSY experiments, and its conformational preferences in solution were investigated by analysis of 3J(HH) coupling constants and NOE enhancements obtained from 1D and 2D NOESY experiments. In order to solve inconsistencies from our preliminary structural studies, simulated annealing studies were performed to thoroughly sample the phase space available to the molecule. Our results reveal that the six-membered oxane ring, which constitutes the most important moiety regarding the three-dimensional (3D) structure and flexibility of the analog, exists in rapid equilibrium between its two accessible chair conformers in an approximate ratio of 70:30. The information gathered from these studies will be of critical importance in our efforts to prepare novel compounds with phorboxazole-like structure and activity.


Asunto(s)
Compuestos Heterocíclicos de 4 o más Anillos/química , Espectroscopía de Resonancia Magnética/métodos , Modelos Moleculares , Oxazoles/química , Conformación Molecular
20.
FEBS J ; 273(14): 3192-203, 2006 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16792701

RESUMEN

The abundant metabolite myo-inositol hexakisphosphate (InsP6) can form vesicular deposits with cations, a widespread phenomenon in plants also found in the cestode parasite, Echinococcus granulosus. In this organism, the deposits are exocytosed, accumulating in a host-exposed sheath of extracellular matrix termed the laminated layer. The formation and mobilization of InsP6 deposits, which involve precipitation and solubilization reactions, respectively, cannot yet be rationalized in quantitative chemical terms, as the solids involved have not been formally described. We report such a description for the InsP6 deposits from E. granulosus, purified as the solid residue left by mild alkaline digestion of the principal mucin component of the laminated layer. The deposits are largely composed of the compound Ca5H2L.16H2O (L representing fully deprotonated InsP6), and additionally contain Mg2+ (6-9% molar ratio with respect to Ca2+), but not K+. Calculations employing recently available chemical constants show that the precipitation of Ca5H2L.16H2O is predicted by thermodynamics in secretory vesicle-like conditions. The deposits appear to be similar to microcrystalline solids when analysed under the electron microscope; we estimate that each crystal comprises around 200 InsP6 molecules. We calculate that the deposits increase, by three orders of magnitude, the surface area available for adsorption of host proteins, a salient ability of the laminated layer. The major inositol phosphate in the deposits, other than InsP6, is myo-inositol (1,2,4,5,6) pentakisphosphate, or its enantiomer, inositol (2,3,4,5,6) pentakisphosphate. The compound appears to be a subproduct of the intracellular pathways leading to the synthesis and vesicular accumulation of InsP6, rather than arising from extracellular hydrolysis of InsP6.


Asunto(s)
Echinococcus granulosus/química , Ácido Fítico/análisis , Animales , Calcio/análisis , Bovinos , Cromatografía Líquida de Alta Presión , Echinococcus granulosus/crecimiento & desarrollo , Exocitosis , Matriz Extracelular/química , Matriz Extracelular/ultraestructura , Hidrólisis , Larva/química , Magnesio/análisis , Ratones , Resonancia Magnética Nuclear Biomolecular , Ácido Fítico/biosíntesis , Ácido Fítico/aislamiento & purificación , Potasio/análisis , Sodio/análisis , Estereoisomerismo , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA