Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Biomed Microdevices ; 20(1): 11, 2018 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-29305767

RESUMEN

Silicon nanomembranes are ultrathin, highly permeable, optically transparent and biocompatible substrates for the construction of barrier tissue models. Trans-epithelial/endothelial electrical resistance (TEER) is often used as a non-invasive, sensitive and quantitative technique to assess barrier function. The current study characterizes the electrical behavior of devices featuring silicon nanomembranes to facilitate their application in TEER studies. In conventional practice with commercial systems, raw resistance values are multiplied by the area of the membrane supporting cell growth to normalize TEER measurements. We demonstrate that under most circumstances, this multiplication does not 'normalize' TEER values as is assumed, and that the assumption is worse if applied to nanomembrane chips with a limited active area. To compare the TEER values from nanomembrane devices to those obtained from conventional polymer track-etched (TE) membranes, we develop finite element models (FEM) of the electrical behavior of the two membrane systems. Using FEM and parallel cell-culture experiments on both types of membranes, we successfully model the evolution of resistance values during the growth of endothelial monolayers. Further, by exploring the relationship between the models we develop a 'correction' function, which when applied to nanomembrane TEER, maps to experiments on conventional TE membranes. In summary, our work advances the the utility of silicon nanomembranes as substrates for barrier tissue models by developing an interpretation of TEER values compatible with conventional systems.


Asunto(s)
Impedancia Eléctrica , Análisis de Elementos Finitos , Membranas Artificiales , Nanoestructuras/química , Animales , Barrera Hematoencefálica , Encéfalo/citología , Células Cultivadas , Electrodos , Endotelio Vascular/citología , Células Epiteliales/citología , Células Epiteliales/fisiología , Ratones , Modelos Teóricos , Permeabilidad , Reproducibilidad de los Resultados , Silicio
2.
Nanotechnology ; 29(23): 235704, 2018 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-29528846

RESUMEN

Insulator-based dielectrophoresis (iDEP) is a simple, scalable mechanism that can be used for directly manipulating particle trajectories in pore-based filtration and separation processes. However, iDEP manipulation of nanoparticles presents unique challenges as the dielectrophoretic force [Formula: see text] exerted on the nanoparticles can easily be overshadowed by opposing kinetic forces. In this study, a molecularly thin, SiN-based nanoporous membrane (NPN) is explored as a breakthrough technology that enhances [Formula: see text] By numerically assessing the gradient of the electric field square [Formula: see text]-a common measure for [Formula: see text] magnitude-it was found that the unique geometrical features of NPN (pore tapering, sharp pore corner and ultrathin thickness) act in favor of intensifying the overall [Formula: see text] A comparative study indicated that [Formula: see text] generated in NPN are four orders of magnitude larger than track-etched polycarbonate membranes with comparable pore size. The stronger [Formula: see text] suggests that iDEP can be conducted under lower voltage bias with NPN: reducing joule heating concerns and enabling solutions to have higher ionic strength. Enabling higher ionic strength solutions may also extend the opportunities of iDEP applications under physiologically relevant conditions. This study also highlights the effects of [Formula: see text] induced by the ion accumulation along charged surfaces (electric-double layer (EDL)). EDL-based [Formula: see text] exists along the entire charged surface, including locations where geometry-based iDEP is negligible. The high surface-to-volume ratio of NPN offers a unique platform for exploiting such EDL-based DEP systems. The EDL-based [Formula: see text] was also found to offset the geometry-based [Formula: see text] but this effect was easily circumvented by reducing the EDL thickness (e.g. increasing the ionic strength from 0.1 to 100 mM). The results from this study imply the potential application of iDEP as a direct, in-operando antifouling mechanism for ultrafiltration technology, and also as an active tuning mechanism to control the cut-off size limit for continuous selectivity of nanomembrane-based separations.

3.
Proc Natl Acad Sci U S A ; 110(46): 18425-30, 2013 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-24167263

RESUMEN

We have developed electroosmotic pumps (EOPs) fabricated from 15-nm-thick porous nanocrystalline silicon (pnc-Si) membranes. Ultrathin pnc-Si membranes enable high electroosmotic flow per unit voltage. We demonstrate that electroosmosis theory compares well with the observed pnc-Si flow rates. We attribute the high flow rates to high electrical fields present across the 15-nm span of the membrane. Surface modifications, such as plasma oxidation or silanization, can influence the electroosmotic flow rates through pnc-Si membranes by alteration of the zeta potential of the material. A prototype EOP that uses pnc-Si membranes and Ag/AgCl electrodes was shown to pump microliter per minute-range flow through a 0.5-mm-diameter capillary tubing with as low as 250 mV of applied voltage. This silicon-based platform enables straightforward integration of low-voltage, on-chip EOPs into portable microfluidic devices with low back pressures.


Asunto(s)
Dispositivos Laboratorio en un Chip , Membranas Artificiales , Microfluídica/instrumentación , Nanoestructuras/química , Presión Osmótica , Silicio/química , Campos Electromagnéticos , Microfluídica/métodos
4.
Nanotechnology ; 26(4): 045704, 2015 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-25557214

RESUMEN

Here we show that the electric field inside an ultrathin membrane is weaker than conventional theory would predict, and that the reduced field is predictive of measured electroosmotic flow rates. Our theoretical analysis shows that the electric field inside a charged nanopore is affected by end effects and dependent on the Dukhin number Du when the pore length-to-diameter aspect ratio λ is less than 80 for Du â‰ª 1 or 300 for Du â‰« 1. The electric field follows an unconventional scaling law; it no longer scales uniformly with the thickness of membrane, but with the local value of λ for each nanopore.


Asunto(s)
Electroósmosis/métodos , Nanoporos , Silicio/química , Electricidad , Modelos Teóricos
5.
Chem Mater ; 29(5): 2294-2302, 2017 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-29651199

RESUMEN

This study describes the formation of functional organic monolayers on thin, nanoporous silicon nitride membranes. We demonstrate that the vapor-phase carbene insertion into the surface C-H bonds can be used to form sub-5 nm molecular coatings on nanoporous materials, which can be further modified with monolayers of polyethylene glycol (PEG) molecules. We investigate composition, thickness, and stability of the functionalized monolayers and the changes in the membrane permeability and pore size distribution. We show that, due to the low coating thickness (~7 nm), the functionalized membrane retains 80% of the original gas permeance and 40% of the original hydraulic permeability. We also show that the carbene/PEG functionalization is hydrolytically stable for up to 48 h of exposure to water and that it can suppress nonspecific adsorption of the proteins BSA and IgG. Our results suggest that the vapor-phase carbenylation can be used as a complementary technology to the traditional self-assembly and polymer brush chemistries in chemical functionalization of nanoporous materials, which are limited in their ability to serve as stable coatings that do not occlude nanomembrane pores.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA