Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Cell Physiol ; 239(4): e31204, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38419397

RESUMEN

Mitochondria and endoplasmic reticulum (ER) contact sites (MERCs) are protein- and lipid-enriched hubs that mediate interorganellar communication by contributing to the dynamic transfer of Ca2+, lipid, and other metabolites between these organelles. Defective MERCs are associated with cellular oxidative stress, neurodegenerative disease, and cardiac and skeletal muscle pathology via mechanisms that are poorly understood. We previously demonstrated that skeletal muscle-specific knockdown (KD) of the mitochondrial fusion mediator optic atrophy 1 (OPA1) induced ER stress and correlated with an induction of Mitofusin-2, a known MERC protein. In the present study, we tested the hypothesis that Opa1 downregulation in skeletal muscle cells alters MERC formation by evaluating multiple myocyte systems, including from mice and Drosophila, and in primary myotubes. Our results revealed that OPA1 deficiency induced tighter and more frequent MERCs in concert with a greater abundance of MERC proteins involved in calcium exchange. Additionally, loss of OPA1 increased the expression of activating transcription factor 4 (ATF4), an integrated stress response (ISR) pathway effector. Reducing Atf4 expression prevented the OPA1-loss-induced tightening of MERC structures. OPA1 reduction was associated with decreased mitochondrial and sarcoplasmic reticulum, a specialized form of ER, calcium, which was reversed following ATF4 repression. These data suggest that mitochondrial stress, induced by OPA1 deficiency, regulates skeletal muscle MERC formation in an ATF4-dependent manner.


Asunto(s)
Factor de Transcripción Activador 4 , Enfermedades Neurodegenerativas , Animales , Ratones , Factor de Transcripción Activador 4/genética , Factor de Transcripción Activador 4/metabolismo , Calcio/metabolismo , Retículo Endoplásmico/metabolismo , Estrés del Retículo Endoplásmico/genética , Lípidos , Mitocondrias/metabolismo , Músculo Esquelético/metabolismo , Enfermedades Neurodegenerativas/patología , Masculino , Ratones Endogámicos C57BL , Células Cultivadas , GTP Fosfohidrolasas/metabolismo
2.
Exp Eye Res ; 238: 109729, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38052338

RESUMEN

PURPOSE: To characterize the neuronal and vascular pathology in vivo and in vitro in a mouse model of radiation retinopathy. METHODS: C57Bl/6J mice underwent cranial irradiation with 12 Gy and in vivo imaging by optical coherence tomography and of relative blood flow velocity by laser speckle flowgraphy for up to 3-6 months after irradiation. Retinal architecture, vascular density and leakage and apoptosis were analyzed by histology and immunohistochemistry before irradiation or at 10, 30, 240, and 365 days after treatment. RESULTS: The vascular density decreased in the plexiform layers starting at 30 days after irradiation. No impairment in retinal flow velocity was seen. Subtle perivascular leakage was present at 10 days, in particular in the outer plexiform layer. This corresponded to increased width of this layer. However, no significant change in the retinal thickness was detected by OCT-B scans. At 365 days after irradiation, the nuclear density was significantly reduced compared to baseline. Apoptosis was detected at 30 days and less prominent at 365 days. CONCLUSIONS: By histology, vascular leakage at 10 days was followed by increased neuronal apoptosis and loss of neuronal and vascular density. However, in vivo imaging approaches that are commonly used in human patients did not detect pathology in mice.


Asunto(s)
Traumatismos por Radiación , Enfermedades de la Retina , Humanos , Ratones , Animales , Angiografía con Fluoresceína , Retina , Vasos Retinianos/patología , Neuronas , Modelos Animales de Enfermedad , Traumatismos por Radiación/patología , Enfermedades de la Retina/etiología , Enfermedades de la Retina/patología , Tomografía de Coherencia Óptica/métodos
3.
Circ Res ; 129(1): e21-e34, 2021 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-33934611

RESUMEN

Although cardiovascular toxicity from traditional chemotherapies has been well recognized for decades, the recent explosion of effective novel targeted cancer therapies with cardiovascular sequelae has driven the emergence of cardio-oncology as a new clinical and research field. Cardiovascular toxicity associated with cancer therapy can manifest as a broad range of potentially life-threatening complications, including heart failure, arrhythmia, myocarditis, and vascular events. Beyond toxicology, the intersection of cancer and heart disease has blossomed to include discovery of genetic and environmental risk factors that predispose to both. There is a pressing need to understand the underlying molecular mechanisms of cardiovascular toxicity to improve outcomes in patients with cancer. Preclinical cardiovascular models, ranging from cellular assays to large animals, serve as the foundation for mechanistic studies, with the ultimate goal of identifying biologically sound biomarkers and cardioprotective therapies that allow the optimal use of cancer treatments while minimizing toxicities. Given that novel cancer therapies target specific pathways integral to normal cardiovascular homeostasis, a better mechanistic understanding of toxicity may provide insights into fundamental pathways that lead to cardiovascular disease when dysregulated. The goal of this scientific statement is to summarize the strengths and weaknesses of preclinical models of cancer therapy-associated cardiovascular toxicity, to highlight overlapping mechanisms driving cancer and cardiovascular disease, and to discuss opportunities to leverage cardio-oncology models to address important mechanistic questions relevant to all patients with cardiovascular disease, including those with and without cancer.


Asunto(s)
Antineoplásicos/toxicidad , Cardiopatías/inducido químicamente , Miocitos Cardíacos/efectos de los fármacos , Pruebas de Toxicidad , American Heart Association , Animales , Cardiotoxicidad , Células Cultivadas , Modelos Animales de Enfermedad , Cardiopatías/genética , Cardiopatías/metabolismo , Cardiopatías/patología , Humanos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Medición de Riesgo , Estados Unidos
4.
Arterioscler Thromb Vasc Biol ; 42(9): 1121-1136, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35899616

RESUMEN

BACKGROUND: Radiation therapy strongly increases the risk of atherosclerotic vascular disease, such as carotid stenosis. Radiation induces DNA damage, in particular in mitochondria, but the upstream and downstream signaling events are poorly understood. The objective of this study was to define such mechanisms. METHODS: Endothelial-specific MCU (mitochondrial Ca2+ uniporter) knockout and C57Bl6/J mice with or without a preinfusion of a mitoTEMPO (mitochondrial reactive oxygen species [ROS] scavenger) were exposed to a single dose of cranial irradiation. 24, and 240 hours postirradiation, vascular reactivity, endothelial function, and mitochondrial integrity were assessed ex vivo and in vitro. RESULTS: In cultured human endothelial cells, irradiation with 4 Gy increased cytosolic Ca2+ transients and the mitochondrial Ca2+ concentration ([Ca2+]mt) and activated MCU. These outcomes correlated with increases in mitochondrial ROS (mtROS), loss of NO production, and sustained damage to mitochondrial but not nuclear DNA. Moreover, irradiation impaired activity of the ETC (electron transport chain) and the transcription of ETC subunits encoded by mitochondrial DNA (mtDNA). Knockdown or pharmacological inhibition of MCU blocked irradiation-induced mtROS production, mtDNA damage, loss of NO production, and impairment of ETC activity. Similarly, the pretreatment with mitoTEMPO, a scavenger of mtROS, reduced irradiation-induced Ca2+ entry, and preserved both the integrity of the mtDNA and the production of NO, suggesting a feed-forward loop involving [Ca2+]m and mtROS. Enhancement of DNA repair in mitochondria, but not in the nucleus, was sufficient to block prolonged mtROS elevations and maintain NO production. Consistent with the findings from cultured cells, in C57BL/6J mice, head and neck irradiation decreased endothelium-dependent vasodilation, and mtDNA integrity in the carotid artery after irradiation. These effects were prevented by endothelial knockout of MCU or infusion with mitoTEMPO. CONCLUSIONS: Irradiation-induced damage to mtDNA is driven by MCU-dependent Ca2+ influx and the generation of mtROS. Such damage leads to reduced transcription of mitochondrial genes and activity of the ETC, promoting sustained mtROS production that induces endothelial dysfunction. Our findings suggest that targeting MCU and mtROS might be sufficient to mitigate irradiation-induced vascular disease.


Asunto(s)
Células Endoteliales , Enfermedades Vasculares , Animales , Calcio , Endotelio , Humanos , Ratones , Ratones Endogámicos C57BL , Mitocondrias , Especies Reactivas de Oxígeno
5.
Int J Mol Sci ; 24(16)2023 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-37629079

RESUMEN

Type 2 diabetes (T2D) is associated with increased risk of atherosclerotic vascular disease due to excessive vascular smooth muscle cell (VSMC) proliferation. Here, we investigated the role of mitochondrial dysfunction and Ca2+ levels in VSMC proliferation in T2D. VSMCs were isolated from normoglycemic and T2D-like mice induced by diet. The effects of mitochondrial Ca2+ uptake were studied using mice with selectively inhibited mitochondrial Ca2+/calmodulin-dependent kinase II (mtCaMKII) in VSMCs. Mitochondrial transition pore (mPTP) was blocked using ER-000444793. VSMCs from T2D compared to normoglycemic mice exhibited increased proliferation and baseline cytosolic Ca2+ levels ([Ca2+]cyto). T2D cells displayed lower endoplasmic reticulum Ca2+ levels, reduced mitochondrial Ca2+ entry, and increased Ca2+ leakage through the mPTP. Mitochondrial and cytosolic Ca2+ transients were diminished in T2D cells upon platelet-derived growth factor (PDGF) administration. Inhibiting mitochondrial Ca2+ uptake or the mPTP reduced VSMC proliferation in T2D, but had contrasting effects on [Ca2+]cyto. In T2D VSMCs, enhanced activation of Erk1/2 and its upstream regulators was observed, driven by elevated [Ca2+]cyto. Inhibiting mtCaMKII worsened the Ca2+ imbalance by blocking mitochondrial Ca2+ entry, leading to further increases in [Ca2+]cyto and Erk1/2 hyperactivation. Under these conditions, PDGF had no effect on VSMC proliferation. Inhibiting Ca2+-dependent signaling in the cytosol reduced excessive Erk1/2 activation and VSMC proliferation. Our findings suggest that altered Ca2+ handling drives enhanced VSMC proliferation in T2D, with mitochondrial dysfunction contributing to this process.


Asunto(s)
Aterosclerosis , Diabetes Mellitus Tipo 2 , Animales , Ratones , Calcio , Factor de Crecimiento Derivado de Plaquetas , Miocitos del Músculo Liso , Proliferación Celular
6.
Exp Eye Res ; 216: 108952, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35051429

RESUMEN

Alterations in neurovascular coupling have been associated with various ocular, cerebral, and systemic vascular disorders. In the eye, changes in vessel caliber by dynamic vessel analysis have been used to measure neurovascular coupling following a light flicker stimulus. Here, we present a new protocol for quantifying light-flicker induced hyperemia in the C57/Bl6J mouse retina using laser speckle flowgraphy (LSFG). Our protocol was adapted from protocols used in human subjects. By acquiring continuous time series data, we detected significant increase in blood flow. These responses are maintained with low variability over multiple imaging sessions, indicating these methods may be applied in serial studies of neurovascular coupling.


Asunto(s)
Hiperemia/fisiopatología , Luz , Vasos Retinianos/efectos de la radiación , Animales , Velocidad del Flujo Sanguíneo/fisiología , Femenino , Flujometría por Láser-Doppler , Masculino , Ratones , Ratones Endogámicos C57BL , Acoplamiento Neurovascular/fisiología , Flujo Sanguíneo Regional/fisiología , Vasos Retinianos/fisiología
8.
BMC Ophthalmol ; 22(1): 285, 2022 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-35765019

RESUMEN

BACKGROUND: To determine whether reductions in retinal and choroidal blood flow measured by laser speckle flowgraphy are detected after 125I-plaque brachytherapy for uveal melanoma. METHODS: In a cross-sectional study, retinal and choroidal blood flow were measured using laser speckle flowgraphy in 25 patients after treatment with 125I-plaque brachytherapy for uveal melanoma. Flow was analyzed in the peripapillary region by mean blur rate as well as in the entire image area with a novel superpixel-based method. Relationships between measures were determined by Spearman correlation. RESULTS: Significant decreases in laser speckle blood flow were observed in both the retinal and choroidal vascular beds of irradiated, but not fellow, eyes. Overall, 24 of 25 patients had decreased blood flow compared to their fellow eye, including 5 of the 6 patients imaged within the first 6 months following brachytherapy. A significant negative correlation between blood flow and time from therapy was present. CONCLUSIONS: Decreases in retinal and choroidal blood flow by laser speckle flowgraphy were detected within the first 6 months following brachytherapy. Reduced retinal and choroidal blood flow may be an early indicator of microangiographic response to radiation therapy.


Asunto(s)
Braquiterapia , Velocidad del Flujo Sanguíneo/fisiología , Coroides/irrigación sanguínea , Estudios Transversales , Humanos , Radioisótopos de Yodo , Flujometría por Láser-Doppler , Rayos Láser , Melanoma , Neoplasias de la Úvea
9.
Arterioscler Thromb Vasc Biol ; 39(6): 991-997, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31070466

RESUMEN

Mitochondria regulate major aspects of cell function by producing ATP, contributing to Ca2+ signaling, influencing redox potential, and controlling levels of reactive oxygen species. In this review, we will discuss recent findings that illustrate how mitochondrial respiration, Ca2+ handling, and production of reactive oxygen species affect vascular smooth muscle cell function during neointima formation. We will review mitochondrial fission/fusion as fundamental mechanisms for smooth muscle proliferation, migration, and metabolism and examine the role of mitochondrial mobility in cell migration. In addition, we will summarize novel aspects by which mitochondria regulate apoptosis.


Asunto(s)
Mitocondrias/metabolismo , Músculo Liso Vascular/metabolismo , Neointima/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Estrés Fisiológico/genética , Proteína Destructora del Antagonista Homólogo bcl-2/genética , Animales , Apoptosis/genética , Movimiento Celular/genética , Proliferación Celular , Células Cultivadas , Humanos , Dinámicas Mitocondriales/genética , Transducción de Señal/genética
10.
Arterioscler Thromb Vasc Biol ; 38(6): 1333-1345, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29599132

RESUMEN

OBJECTIVE: The main objective of this study is to define the mechanisms by which mitochondria control vascular smooth muscle cell (VSMC) migration and impact neointimal hyperplasia. APPROACH AND RESULTS: The multifunctional CaMKII (Ca2+/calmodulin-dependent kinase II) in the mitochondrial matrix of VSMC drove a feed-forward circuit with the mitochondrial Ca2+ uniporter (MCU) to promote matrix Ca2+ influx. MCU was necessary for the activation of mitochondrial CaMKII (mtCaMKII), whereas mtCaMKII phosphorylated MCU at the regulatory site S92 that promotes Ca2+ entry. mtCaMKII was necessary and sufficient for platelet-derived growth factor-induced mitochondrial Ca2+ uptake. This effect was dependent on MCU. mtCaMKII and MCU inhibition abrogated VSMC migration and mitochondrial translocation to the leading edge. Overexpression of wild-type MCU, but not MCU S92A, mutant in MCU-/- VSMC rescued migration and mitochondrial mobility. Inhibition of microtubule, but not of actin assembly, blocked mitochondrial mobility. The outer mitochondrial membrane GTPase Miro-1 promotes mitochondrial mobility via microtubule transport but arrests it in subcellular domains of high Ca2+ concentrations. In Miro-1-/- VSMC, mitochondrial mobility and VSMC migration were abolished, and overexpression of mtCaMKII or a CaMKII inhibitory peptide in mitochondria (mtCaMKIIN) had no effect. Consistently, inhibition of mtCaMKII increased and prolonged cytosolic Ca2+ transients. mtCaMKII inhibition diminished phosphorylation of focal adhesion kinase and myosin light chain, leading to reduced focal adhesion turnover and cytoskeletal remodeling. In a transgenic model of selective mitochondrial CaMKII inhibition in VSMC, neointimal hyperplasia was significantly reduced after vascular injury. CONCLUSIONS: These findings identify mitochondrial CaMKII as a key regulator of mitochondrial Ca2+ uptake via MCU, thereby controlling mitochondrial translocation and VSMC migration after vascular injury.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Calcio/metabolismo , Traumatismos de las Arterias Carótidas/enzimología , Movimiento Celular , Mitocondrias Musculares/enzimología , Músculo Liso Vascular/enzimología , Miocitos del Músculo Liso/enzimología , Neointima , Animales , Canales de Calcio/genética , Canales de Calcio/metabolismo , Señalización del Calcio , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Traumatismos de las Arterias Carótidas/genética , Traumatismos de las Arterias Carótidas/patología , Células Cultivadas , Modelos Animales de Enfermedad , Hiperplasia , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Mitocondrias Musculares/patología , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/patología , Proteínas de Unión al GTP rho/genética , Proteínas de Unión al GTP rho/metabolismo
11.
Exp Cell Res ; 362(2): 400-411, 2018 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-29225050

RESUMEN

Mitochondria are increasingly recognized as key mediators of acute cellular stress responses in asthma. However, the distinct roles of regulators of mitochondrial physiology on allergic asthma phenotypes are currently unknown. The mitochondrial Ca2+ uniporter (MCU) resides in the inner mitochondrial membrane and controls mitochondrial Ca2+ uptake into the mitochondrial matrix. To understand the function of MCU in models of allergic asthma, in vitro and in vivo studies were performed using models of functional deficiency or knockout of MCU. In primary human respiratory epithelial cells, MCU inhibition abrogated mitochondrial Ca2+ uptake and reactive oxygen species (ROS) production, preserved the mitochondrial membrane potential and protected from apoptosis in response to the pleiotropic Th2 cytokine IL-13. Consequently, epithelial barrier function was maintained with MCU inhibition. Similarly, the endothelial barrier was preserved in respiratory epithelium isolated from MCU-/- mice after exposure to IL-13. In the ovalbumin-model of allergic airway disease, MCU deficiency resulted in decreased apoptosis within the large airway epithelial cells. Concordantly, expression of the tight junction protein ZO-1 was preserved, indicative of maintenance of epithelial barrier function. These data implicate mitochondrial Ca2+ uptake through MCU as a key controller of epithelial cell viability in acute allergic asthma.


Asunto(s)
Asma/genética , Canales de Calcio/genética , Calcio/metabolismo , Células Epiteliales/metabolismo , Interleucina-13/genética , Alérgenos/metabolismo , Animales , Apoptosis/genética , Asma/metabolismo , Asma/patología , Canales de Calcio/efectos de los fármacos , Señalización del Calcio/genética , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Supervivencia Celular/genética , Modelos Animales de Enfermedad , Células Epiteliales/patología , Humanos , Interleucina-13/inmunología , Potencial de la Membrana Mitocondrial/genética , Ratones , Mitocondrias/genética , Mitocondrias/metabolismo , Especies Reactivas de Oxígeno/metabolismo
12.
Infect Immun ; 86(3)2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29229737

RESUMEN

Staphylococcus aureus infective endocarditis (IE) is a fast-progressing and tissue-destructive infection of the cardiac endothelium. The superantigens (SAgs) toxic shock syndrome toxin 1 (TSST-1), staphylococcal enterotoxin C (SEC), and the toxins encoded by the enterotoxin gene cluster (egc) play a novel and essential role in the etiology of S. aureus IE. Recent studies indicate that SAgs act at the infection site to cause tissue pathology and promote vegetation growth. The underlying mechanism of SAg involvement has not been clearly defined. In SAg-mediated responses, immune cell priming is considered a primary triggering event leading to endothelial cell activation and altered function. Utilizing immortalized human aortic endothelial cells (iHAECs), we demonstrated that TSST-1 directly activates iHAECs, as documented by upregulation of vascular and intercellular adhesion molecules (VCAM-1 and ICAM-1). TSST-1-mediated activation results in increased monolayer permeability and defects in vascular reendothelialization. Yet stimulation of iHAECs with TSST-1 fails to induce interleukin-8 (IL-8) and IL-6 production. Furthermore, simultaneous stimulation of iHAECs with TSST-1 and lipopolysaccharide (LPS) inhibits LPS-mediated IL-8 and IL-6 secretion, even after pretreatment with either of the proinflammatory cytokines tumor necrosis factor alpha (TNF-α) and IL-1ß. IL-8 suppression is not mediated by TSST-1 binding to its canonical receptor major histocompatibility complex class II (MHC-II), supporting current evidence for a nonhematopoietic interacting site on SAgs. Together, the data suggest that TSST-1 differentially regulates cell-bound and secreted markers of endothelial cell activation that may result in dysregulated innate immune responses during S. aureus IE. Endothelial changes resulting from the action of SAgs can therefore directly contribute to the aggressive nature of S. aureus IE and development of life-threatening complications.


Asunto(s)
Aorta/citología , Toxinas Bacterianas/toxicidad , Células Endoteliales/efectos de los fármacos , Enterotoxinas/toxicidad , Superantígenos/toxicidad , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Interleucina-6/genética , Interleucina-6/metabolismo , Interleucina-8/genética , Interleucina-8/metabolismo
13.
Physiol Rev ; 91(3): 889-915, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21742790

RESUMEN

The multifunctional Ca(2+)- and calmodulin-dependent protein kinase II (CaMKII) is now recognized to play a central role in pathological events in the cardiovascular system. CaMKII has diverse downstream targets that promote vascular disease, heart failure, and arrhythmias, so improved understanding of CaMKII signaling has the potential to lead to new therapies for cardiovascular disease. CaMKII is a multimeric serine-threonine kinase that is initially activated by binding calcified calmodulin (Ca(2+)/CaM). Under conditions of sustained exposure to elevated Ca(2+)/CaM, CaMKII transitions into a Ca(2+)/CaM-autonomous enzyme by two distinct but parallel processes. Autophosphorylation of threonine-287 in the CaMKII regulatory domain "traps" CaMKII into an open configuration even after Ca(2+)/CaM unbinding. More recently, our group identified a pair of methionines (281/282) in the CaMKII regulatory domain that undergo a partially reversible oxidation which, like autophosphorylation, prevents CaMKII from inactivating after Ca(2+)/CaM unbinding. Here we review roles of CaMKII in cardiovascular disease with an eye to understanding how CaMKII may act as a transduction signal to connect pro-oxidant conditions into specific downstream pathological effects that are relevant to rare and common forms of cardiovascular disease.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Sistema Cardiovascular/enzimología , Vasos Sanguíneos/metabolismo , Enfermedades Cardiovasculares/etiología , Activación Enzimática/fisiología , Insuficiencia Cardíaca/fisiopatología , Humanos , Contracción Miocárdica/fisiología , Miocardio/enzimología , Oxidación-Reducción , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/fisiología , Distribución Tisular
15.
Mol Pharm ; 14(6): 2166-2175, 2017 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-28460526

RESUMEN

Asthma is a common lung disease affecting over 300 million people worldwide and is associated with increased reactive oxygen species, eosinophilic airway inflammation, bronchoconstriction, and mucus production. Targeting of novel therapeutic agents to the lungs of patients with asthma may improve efficacy of treatments and minimize side effects. We previously demonstrated that Ca2+/calmodulin-dependent protein kinase (CaMKII) is expressed and activated in the bronchial epithelium of asthmatic patients. CaMKII inhibition in murine models of allergic asthma reduces key disease phenotypes, providing the rationale for targeted CaMKII inhibition as a potential therapeutic approach for asthma. Herein we developed a novel cationic nanoparticle (NP)-based system for delivery of the potent and specific CaMKII inhibitor peptide, CaMKIIN, to airways.1 CaMKIIN-loaded NPs abrogated the severity of allergic asthma in a murine model. These findings provide the basis for development of innovative, site-specific drug delivery therapies, particularly for treatment of pulmonary diseases such as asthma.


Asunto(s)
Asma/tratamiento farmacológico , Asma/enzimología , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/antagonistas & inhibidores , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Animales , Sistemas de Liberación de Medicamentos/métodos , Ácido Láctico/química , Pulmón/metabolismo , Ratones , Nanopartículas/química , Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico-Ácido Poliglicólico
16.
Am J Physiol Lung Cell Mol Physiol ; 310(1): L86-94, 2016 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-26545899

RESUMEN

The calcium and calmodulin-dependent kinase II (CaMKII) translates increases in intracellular Ca(2+) into downstream signaling events. Its function in pulmonary pathologies remains largely unknown. CaMKII is a well-known mediator of apoptosis and regulator of endoplasmic reticulum (ER) Ca(2+). ER stress and apoptosis of type II pneumocytes lead to aberrant tissue repair and progressive collagen deposition in pulmonary fibrosis. Thus we hypothesized that CaMKII inhibition alleviates fibrosis in response to bleomycin by attenuating apoptosis and ER stress of type II pneumocytes. We first established that CaMKII was strongly expressed in the distal respiratory epithelium, in particular in surfactant protein-C-positive type II pneumocytes, and activated after bleomycin instillation. We generated a novel transgenic model of inducible expression of the CaMKII inhibitor peptide AC3-I limited to type II pneumocytes (Tg SPC-AC3-I). Tg SPC-AC3-I mice were protected from development of pulmonary fibrosis after bleomycin exposure compared with wild-type mice. CaMKII inhibition also provided protection from apoptosis in type II pneumocytes in vitro and in vivo. Moreover, intracellular Ca(2+) levels and ER stress were increased by bleomycin and significantly blunted with CaMKII inhibition in vitro. These data demonstrate that CaMKII inhibition prevents type II pneumocyte apoptosis and development of pulmonary fibrosis in response to bleomycin. CaMKII inhibition may therefore be a promising approach to prevent or ameliorate the progression of pulmonary fibrosis.


Asunto(s)
Células Epiteliales Alveolares/efectos de los fármacos , Apoptosis/efectos de los fármacos , Bleomicina/farmacología , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/antagonistas & inhibidores , Calcio/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Fibrosis Pulmonar/tratamiento farmacológico , Células Epiteliales Alveolares/metabolismo , Animales , Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/metabolismo , Estrés del Retículo Endoplásmico/efectos de los fármacos , Estrés del Retículo Endoplásmico/fisiología , Ratones Transgénicos , Fibrosis Pulmonar/metabolismo , Fibrosis Pulmonar/patología
17.
Arterioscler Thromb Vasc Biol ; 35(11): 2391-400, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26427793

RESUMEN

OBJECTIVE: Cellular fibronectin containing extra domain A (EDA(+)-FN) is abundant in the arteries of patients with atherosclerosis. Several in vitro studies suggest that EDA(+)-FN interacts with Toll-like receptor 4 (TLR4). We tested the hypothesis that EDA(+)-FN exacerbates atherosclerosis through TLR4 in a clinically relevant model of atherosclerosis, the apolipoprotein E-deficient (Apoe(-/-)) mouse. APPROACH AND RESULTS: The extent of atherosclerosis was evaluated in whole aortae and cross sections of the aortic sinus in male and female EDA(-/-)Apoe(-/-) mice (which lack EDA(+)-FN), EDA(fl/fl)Apoe(-/-) mice (which constitutively express EDA(+)-FN), and control Apoe(-/-) mice fed a high-fat Western diet for 14 weeks. Irrespective of sex, EDA(fl/fl)Apoe(-/-) mice exhibited a 2-fold increase in atherosclerotic lesions (aorta and aortic sinus) and macrophage content within plaques, whereas EDA(-/-)Apoe(-/-) mice exhibited reduced atherosclerotic lesions (P<0.05 versus Apoe(-/-), n=10-12 mice/group), although cholesterol and triglyceride levels and circulating leukocytes were similar. Genetic ablation of TLR4 partially reversed atherosclerosis exacerbation in EDA(fl/fl)Apoe(-/-) mice (P<0.05) but had no effect on atherosclerotic lesions in EDA(-/-)Apoe(-/-) mice. Purified cellular FN, which contains EDA, potentiated dose-dependent NFκB-mediated inflammation (increased phospho-NFκB p65/NFκB p65, tumor necrosis factor-α, and interleukin-1ß) in bone marrow-derived macrophages from EDA(-/-)Apoe(-/-) mice but not from EDA(-/-)TLR4(-/-)Apoe(-/-) mice. Finally, using immunohistochemistry, we provide evidence for the first time that EDA(+)-FN colocalizes with macrophage TLR4 in murine aortic lesions and human coronary artery atherosclerotic plaques. CONCLUSIONS: Our findings reveal that TLR4 signaling contributes to EDA(+)-FN-mediated exacerbation of atherosclerosis. We suggest that EDA(+)-FN could be a therapeutic target in atherosclerosis.


Asunto(s)
Aorta/metabolismo , Enfermedades de la Aorta/metabolismo , Aterosclerosis/metabolismo , Fibronectinas/metabolismo , Macrófagos/metabolismo , Transducción de Señal , Receptor Toll-Like 4/metabolismo , Animales , Aorta/patología , Enfermedades de la Aorta/genética , Enfermedades de la Aorta/inmunología , Enfermedades de la Aorta/patología , Enfermedades de la Aorta/prevención & control , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Aterosclerosis/genética , Aterosclerosis/inmunología , Aterosclerosis/patología , Aterosclerosis/prevención & control , Enfermedad de la Arteria Coronaria/metabolismo , Enfermedad de la Arteria Coronaria/patología , Vasos Coronarios/metabolismo , Vasos Coronarios/patología , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Femenino , Fibronectinas/deficiencia , Fibronectinas/genética , Humanos , Lipoproteínas LDL/metabolismo , Macrófagos/inmunología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , FN-kappa B/metabolismo , Placa Aterosclerótica , Isoformas de Proteínas , Receptor Toll-Like 4/deficiencia , Receptor Toll-Like 4/genética
18.
Arterioscler Thromb Vasc Biol ; 35(12): 2594-604, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26449752

RESUMEN

OBJECTIVE: Emerging evidence suggests that methionine oxidation can directly affect protein function and may be linked to cardiovascular disease. The objective of this study was to define the role of the methionine sulfoxide reductase A (MsrA) in models of vascular disease and identify its signaling pathways. APPROACH AND RESULTS: MsrA was readily identified in all layers of the vascular wall in human and murine arteries. Deletion of the MsrA gene did not affect atherosclerotic lesion area in apolipoprotein E-deficient mice and had no significant effect on susceptibility to experimental thrombosis after photochemical injury. In contrast, the neointimal area after vascular injury caused by complete ligation of the common carotid artery was significantly greater in MsrA-deficient than in control mice. In aortic vascular smooth muscle cells lacking MsrA, cell proliferation was significantly increased because of accelerated G1/S transition. In parallel, cyclin D1 protein and cdk4/cyclin D1 complex formation and activity were increased in MsrA-deficient vascular smooth muscle cell, leading to enhanced retinoblastoma protein phosphorylation and transcription of E2F. Finally, MsrA-deficient vascular smooth muscle cell exhibited greater activation of extracellular signal-regulated kinase 1/2 that was caused by increased activity of the Ras/Raf/mitogen-activated protein kinase signaling pathway. CONCLUSIONS: Our findings implicate MsrA as a negative regulator of vascular smooth muscle cell proliferation and neointimal hyperplasia after vascular injury through control of the Ras/Raf/mitogen-activated protein kinase kinase/extracellular signal-regulated kinase 1/2 signaling pathway.


Asunto(s)
Enfermedades de la Aorta/enzimología , Aterosclerosis/enzimología , Traumatismos de las Arterias Carótidas/enzimología , Eliminación de Gen , Metionina Sulfóxido Reductasas/deficiencia , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Neointima , Transducción de Señal , Trombosis/enzimología , Animales , Aorta/enzimología , Aorta/patología , Enfermedades de la Aorta/genética , Enfermedades de la Aorta/patología , Apolipoproteínas E/deficiencia , Apolipoproteínas E/genética , Aterosclerosis/genética , Aterosclerosis/patología , Arterias Carótidas/enzimología , Arterias Carótidas/patología , Traumatismos de las Arterias Carótidas/genética , Traumatismos de las Arterias Carótidas/patología , Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Movimiento Celular , Proliferación Celular , Células Cultivadas , Modelos Animales de Enfermedad , Femenino , Humanos , Hiperplasia , Masculino , Metionina Sulfóxido Reductasas/genética , Ratones Endogámicos C57BL , Ratones Noqueados , Miocitos del Músculo Liso/enzimología , Miocitos del Músculo Liso/patología , Trombosis/sangre , Trombosis/genética , Factores de Tiempo , Quinasas raf/metabolismo , Proteínas ras/metabolismo
19.
Am J Respir Cell Mol Biol ; 52(1): 106-15, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24988374

RESUMEN

Asthma is a disease of acute and chronic inflammation in which cytokines play a critical role in orchestrating the allergic inflammatory response. IL-13 and transforming growth factor (TGF)-ß promote fibrotic airway remodeling, a major contributor to disease severity. Improved understanding is needed, because current therapies are inadequate for suppressing development of airway fibrosis. IL-13 is known to stimulate respiratory epithelial cells to produce TGF-ß, but the mechanism through which this occurs is unknown. Here, we tested the hypothesis that reactive oxygen species (ROS) are a critical signaling intermediary between IL-13 or allergen stimulation and TGF-ß-dependent airway remodeling. We used cultured human bronchial epithelial cells and an in vivo mouse model of allergic asthma to map a pathway where allergens enhanced mitochondrial ROS, which is an essential upstream signal for TGF-ß activation and enhanced collagen production and deposition in airway fibroblasts. We show that mitochondria in airway epithelium are an essential source of ROS that activate TGF-ß expression and activity. TGF-ß from airway epithelium stimulates collagen expression in fibroblasts, contributing to an early fibrotic response to allergen exposure in cultured human airway cells and in ovalbumin-challenged mice. Treatment with the mitochondrial-targeted antioxidant, (2-(2,2,6,6-Tetramethylpiperidin-1-oxyl-4-ylamino)-2-oxoethyl)triphenylphosphonium chloride (mitoTEMPO), significantly attenuated mitochondrial ROS, TGF-ß, and collagen deposition in OVA-challenged mice and in cultured human epithelial cells. Our findings suggest that mitochondria are a critical source of ROS for promoting TGF-ß activity that contributes to airway remodeling in allergic asthma. Mitochondrial-targeted antioxidants may be a novel approach for future asthma therapies.


Asunto(s)
Antioxidantes/farmacología , Asma/tratamiento farmacológico , Asma/metabolismo , Colágeno/biosíntesis , Mitocondrias/metabolismo , Compuestos Organofosforados/farmacología , Piperidinas/farmacología , Factor de Crecimiento Transformador beta/biosíntesis , Animales , Asma/inducido químicamente , Asma/genética , Asma/patología , Células Cultivadas , Colágeno/genética , Modelos Animales de Enfermedad , Humanos , Interleucina-13/metabolismo , Ratones , Ratones Transgénicos , Mitocondrias/patología , Especies Reactivas de Oxígeno/metabolismo , Factor de Crecimiento Transformador beta/genética
20.
Oxid Med Cell Longev ; 2024: 4887877, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38962180

RESUMEN

Approximately 70% of all strokes occur in patients over 65 years old, and stroke increases the risk of developing dementia. The circle of Willis (CoW), the ring of arteries at the base of the brain, links the intracerebral arteries to one another to maintain adequate cerebral perfusion. The CoW proteome is affected in cerebrovascular and neurodegenerative diseases, but changes related to aging have not been described. Here, we report on a quantitative proteomics analysis comparing the CoW from five young (2-3-month-old) and five aged male (18-20-month-old) mice using gene ontology (GO) enrichment, ingenuity pathway analysis (IPA), and iPathwayGuide tools. This revealed 242 proteins that were significantly dysregulated with aging, among which 189 were upregulated and 53 downregulated. GO enrichment-based analysis identified blood coagulation as the top biological function that changed with age and integrin binding and extracellular matrix constituents as the top molecular functions. Consistent with these findings, iPathwayGuide-based impact analysis revealed associations between aging and the complement and coagulation, platelet activation, ECM-receptor interaction, and metabolic process pathways. Furthermore, IPA analysis revealed the enrichment of 97 canonical pathways that contribute to inflammatory responses, as well as 59 inflammation-associated upstream regulators including 39 transcription factors and 20 cytokines. Thus, aging-associated changes in the CoW proteome in male mice demonstrate increases in metabolic, thrombotic, and inflammatory processes.


Asunto(s)
Envejecimiento , Círculo Arterial Cerebral , Proteoma , Animales , Círculo Arterial Cerebral/patología , Envejecimiento/metabolismo , Masculino , Proteoma/metabolismo , Ratones , Enfermedades Vasculares/metabolismo , Enfermedades Vasculares/patología , Ratones Endogámicos C57BL , Proteómica/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA