Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
BMC Biol ; 18(1): 71, 2020 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-32580727

RESUMEN

BACKGROUND: Age-associated DNA methylation changes provide a promising biomarker for the aging process. While genome-wide DNA methylation profiles enable robust age-predictors by integration of many age-associated CG dinucleotides (CpGs), there are various alternative approaches for targeted measurements at specific CpGs that better support standardized and cost-effective high-throughput analysis. RESULTS: In this study, we utilized 4647 Illumina BeadChip profiles of blood to select CpG sites that facilitate reliable age-predictions based on pyrosequencing. We demonstrate that the precision of DNA methylation measurements can be further increased with droplet digital PCR (ddPCR). In comparison, bisulfite barcoded amplicon sequencing (BBA-seq) gave slightly lower correlation between chronological age and DNA methylation at individual CpGs, while the age-predictions were overall relatively accurate. Furthermore, BBA-seq data revealed that the correlation of methylation levels with age at neighboring CpG sites follows a bell-shaped curve, often associated with a CTCF binding site. We demonstrate that within individual BBA-seq reads the DNA methylation at neighboring CpGs is not coherently modified, but reveals a stochastic pattern. Based on this, we have developed a new approach for epigenetic age predictions based on the binary sequel of methylated and non-methylated sites in individual reads, which reflects heterogeneity in epigenetic aging within a sample. CONCLUSION: Targeted DNA methylation analysis at few age-associated CpGs by pyrosequencing, BBA-seq, and particularly ddPCR enables high precision of epigenetic age-predictions. Furthermore, we demonstrate that the stochastic evolution of age-associated DNA methylation patterns in BBA-seq data enables epigenetic clocks for individual DNA strands.


Asunto(s)
Envejecimiento/genética , Metilación de ADN , Epigénesis Genética/fisiología , Epigenómica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento , Sangre/metabolismo , Marcadores Genéticos , Humanos
2.
Plant J ; 85(3): 337-47, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26716914

RESUMEN

Phylogenetic divergence in Asparagales plants is associated with switches in telomere sequences. The last switch occurred with divergence of the genus Allium (Amaryllidaceae) from the other Allioideae (formerly Alliaceae) genera, resulting in uncharacterized telomeres maintained by an unknown mechanism. To characterize the unknown Allium telomeres, we applied a combination of bioinformatic processing of transcriptomic and genomic data with standard approaches in telomere biology such as BAL31 sensitivity tests, terminal restriction fragment analysis, the telomere repeat amplification protocol (TRAP), and fluorescence in situ hybridization (FISH). Using these methods, we characterize the unusual telomeric sequence (CTCGGTTATGGG)n present in Allium species, demonstrate its synthesis by telomerase, and characterize the telomerase reverse transcriptase (TERT) subunit of Allium cepa. Our findings open up the possibility of studying the molecular details of the evolutionary genetic change in Allium telomeres and its possible role in speciation. Experimental studies addressing the implications of this change in terms of the interplay of telomere components may now be designed to shed more light on telomere functions and evolution in general.


Asunto(s)
Allium/genética , Cromosomas de las Plantas/genética , Evolución Molecular , Telomerasa/metabolismo , Telómero/genética , Allium/enzimología , Secuencia de Bases , Biología Computacional , Genómica , Hibridación Fluorescente in Situ , Filogenia , Análisis de Secuencia de ADN , Telomerasa/genética , Transcriptoma
3.
Plant J ; 82(4): 644-54, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25828846

RESUMEN

The characterization of unusual telomere sequence sheds light on patterns of telomere evolution, maintenance and function. Plant species from the closely related genera Cestrum, Vestia and Sessea (family Solanaceae) lack known plant telomeric sequences. Here we characterize the telomere of Cestrum elegans, work that was a challenge because of its large genome size and few chromosomes (1C 9.76 pg; n = 8). We developed an approach that combines BAL31 digestion, which digests DNA from the ends and chromosome breaks, with next-generation sequencing (NGS), to generate data analysed in RepeatExplorer, designed for de novo repeats identification and quantification. We identify an unique repeat motif (TTTTTTAGGG)n in C. elegans, occurring in ca. 30 400 copies per haploid genome, averaging ca. 1900 copies per telomere, and synthesized by telomerase. We demonstrate that the motif is synthesized by telomerase. The occurrence of an unusual eukaryote (TTTTTTAGGG)n telomeric motif in C. elegans represents a switch in motif from the 'typical' angiosperm telomere (TTTAGGG)n . That switch may have happened with the divergence of Cestrum, Sessea and Vestia. The shift in motif when it arose would have had profound effects on telomere activity. Thus our finding provides a unique handle to study how telomerase and telomeres responded to genetic change, studies that will shed more light on telomere function.


Asunto(s)
Cestrum/genética , Cromosomas de las Plantas/genética , Telómero/química , Telómero/genética
4.
Plant Mol Biol ; 90(1-2): 189-206, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26597966

RESUMEN

Recently we characterised TRB1, a protein from a single-myb-histone family, as a structural and functional component of telomeres in Arabidopsis thaliana. TRB proteins, besides their ability to bind specifically to telomeric DNA using their N-terminally positioned myb-like domain of the same type as in human shelterin proteins TRF1 or TRF2, also possess a histone-like domain which is involved in protein-protein interactions e.g., with POT1b. Here we set out to investigate the genome-wide localization pattern of TRB1 to reveal its preferential sites of binding to chromatin in vivo and its potential functional roles in the genome-wide context. Our results demonstrate that TRB1 is preferentially associated with promoter regions of genes involved in ribosome biogenesis, in addition to its roles at telomeres. This preference coincides with the frequent occurrence of telobox motifs in the upstream regions of genes in this category, but it is not restricted to the presence of a telobox. We conclude that TRB1 shows a specific genome-wide distribution pattern which suggests its role in regulation of genes involved in biogenesis of the translational machinery, in addition to its preferential telomeric localization.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Unión a Telómeros/metabolismo , Telómero/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Secuencia de Bases , Biología Computacional , Biblioteca de Genes , Histonas/metabolismo , Datos de Secuencia Molecular , Motivos de Nucleótidos , Análisis de Secuencia por Matrices de Oligonucleótidos , Regiones Promotoras Genéticas/genética , Unión Proteica , Biosíntesis de Proteínas , Ribosomas/genética , Análisis de Secuencia de ADN , Proteínas de Unión a Telómeros/genética
5.
Leukemia ; 36(1): 80-89, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34131280

RESUMEN

Assessment of measurable residual disease (MRD) upon treatment of acute myeloid leukemia (AML) remains challenging. It is usually addressed by highly sensitive PCR- or sequencing-based screening of specific mutations, or by multiparametric flow cytometry. However, not all patients have suitable mutations and heterogeneity of surface markers hampers standardization in clinical routine. In this study, we propose an alternative approach to estimate MRD based on AML-associated DNA methylation (DNAm) patterns. We identified four CG dinucleotides (CpGs) that commonly reveal aberrant DNAm in AML and their combination could reliably discern healthy and AML samples. Interestingly, bisulfite amplicon sequencing demonstrated that aberrant DNAm patterns were symmetric on both alleles, indicating that there is epigenetic crosstalk between homologous chromosomes. We trained shallow-learning and deep-learning algorithms to identify anomalous DNAm patterns. The method was then tested on follow-up samples with and without MRD. Notably, even samples that were classified as MRD negative often revealed higher anomaly ratios than healthy controls, which may reflect clonal hematopoiesis. Our results demonstrate that targeted DNAm analysis facilitates reliable discrimination of malignant and healthy samples. However, since healthy samples also comprise few abnormal-classified DNAm reads the approach does not yet reliably discriminate MRD positive and negative samples.


Asunto(s)
Biomarcadores de Tumor/genética , Metilación de ADN , Regulación Leucémica de la Expresión Génica , Leucemia Mieloide Aguda/patología , Mutación , Recurrencia Local de Neoplasia/patología , Neoplasia Residual/patología , Humanos , Leucemia Mieloide Aguda/genética , Recurrencia Local de Neoplasia/genética , Neoplasia Residual/genética , Pronóstico , Tasa de Supervivencia
6.
Clin Nutr ; 40(5): 3263-3278, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33183881

RESUMEN

BACKGROUND & AIMS: The micronutrient zinc is essential for proper immune function. Consequently, zinc deficiency leads to impaired immune function, as seen in decreased secretion of interleukin (IL)-2 by T cells. Although this association has been known since the late 1980s, the underlying molecular mechanisms are still unknown. Zinc deficiency and reduced IL-2 levels are especially found in the elderly, which in turn are prone to chronic diseases. Here, we describe a new molecular link between zinc deficiency and reduced IL-2 expression in T cells. METHODS: The effects of zinc deficiency were first investigated in vitro in the human T cell lines Jurkat and Hut-78 and complemented by in vivo data from zinc-supplemented pigs. A short- and long-term model for zinc deficiency was established. Zinc levels were detected by flow cytometry and expression profiles were investigated on the mRNA and protein level. RESULTS: The expression of the transcription factor cAMP-responsive-element modulator α (CREMα) is increased during zinc deficiency in vitro, due to increased protein phosphatase 2A (PP2A) activity, resulting in decreased IL-2 production. Additionally, zinc supplementation in vivo reduced CREMα levels causing increased IL-2 expression. On epigenetic levels increased CREMα binding to the IL-2 promoter is mediated by histone deacetylase 1 (HDAC1). The HDAC1 activity is inhibited by zinc. Moreover, deacetylation of the activating histone mark H3K9 was increased under zinc deficiency, resulting in reduced IL-2 expression. CONCLUSIONS: With the transcription factor CREMα a molecular link was uncovered, connecting zinc deficiency with reduced IL-2 production due to enhanced PP2A and HDAC1 activity.


Asunto(s)
Modulador del Elemento de Respuesta al AMP Cíclico/inmunología , Expresión Génica/genética , Silenciador del Gen , Interleucina-2/biosíntesis , Linfocitos T/inmunología , Zinc/deficiencia , Zinc/inmunología , Animales , Modulador del Elemento de Respuesta al AMP Cíclico/genética , Modelos Animales de Enfermedad , Expresión Génica/inmunología , Humanos , Técnicas In Vitro , Interleucina-2/genética , Interleucina-2/inmunología , Porcinos
7.
Stem Cell Res Ther ; 11(1): 105, 2020 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-32138773

RESUMEN

BACKGROUND: The use of mesenchymal stromal cells (MSCs) for research and clinical application is hampered by cellular heterogeneity and replicative senescence. Generation of MSC-like cells from induced pluripotent stem cells (iPSCs) may circumvent these limitations, and such iPSC-derived MSCs (iMSCs) are already tested in clinical trials. So far, a comparison of MSCs and iMSCs was particularly addressed in bulk culture. Despite the high hopes in cellular therapy, only little is known how the composition of different subclones changes in these cell preparations during culture expansion. METHODS: In this study, we used multicolor lentiviral genetic barcoding for the marking of individual cells within cell preparations. Based on this, we could track the clonal composition of syngenic MSCs, iPSCs, and iMSCs during culture expansion. Furthermore, we analyzed DNA methylation patterns at senescence-associated genomic regions by barcoded bisulfite amplicon sequencing. The proliferation and differentiation capacities of individual subclones within MSCs and iMSCs were investigated with limiting dilution assays. RESULTS: Overall, the clonal composition of primary MSCs and iPSCs gradually declined during expansion. In contrast, iMSCs became oligoclonal early during differentiation, indicating that they were derived from few individual iPSCs. This dominant clonal outgrowth of iMSCs was not associated with changes in chromosomal copy number variation. Furthermore, clonal dynamics were not clearly reflected by stochastically acquired DNA methylation patterns. Limiting dilution assays revealed that iMSCs are heterogeneous in colony formation and in vitro differentiation potential, while this was even more pronounced in primary MSCs. CONCLUSIONS: Our results indicate that the subclonal diversity of MSCs and iPSCs declines gradually during in vitro culture, whereas derivation of iMSCs may stem from few individual iPSCs. Differentiation regimen needs to be further optimized to achieve homogeneous differentiation of iPSCs towards iMSCs.


Asunto(s)
Células Madre Pluripotentes Inducidas , Células Madre Mesenquimatosas , Diferenciación Celular , Células Cultivadas , Variaciones en el Número de Copia de ADN
8.
Clin Epigenetics ; 9: 9, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28168006

RESUMEN

BACKGROUND: There is a growing interest in simple molecular biomarkers for biological aging. Age-associated DNA methylation (DNAm) changes at specific CG dinucleotides can be combined into epigenetic age predictors to estimate chronological age-and the deviation of chronological and predicted age (∆age) seems to be associated with all-cause mortality. In this study, we have further validated this association and analyzed whether or not individual age-associated CG-dinucleotides (CpGs) are related to life expectancy. FINDINGS: In the German ESTHER cohort, we used 864 DNAm profiles of blood samples as the discovery set and 1000 DNAm profiles as the validation set to predict chronological age with three previously reported age predictors-based on 99, 71, or 353 age-associated CpGs. Several of these individual CpGs were significantly associated with life expectancy, and for some of these CpGs, this was even reproducible in the independent datasets. Notably, those CpGs that revealed significant association with life expectancy were overall rather hypomethylated upon aging. CONCLUSION: Individual age-associated CpGs may provide biomarkers for all-cause mortality-but confounding factors need to be critically taken into consideration, and alternative methods, which facilitate more quantitative measurements at individual CpGs, might be advantageous. Our data suggest that particularly specific CpGs that become hypomethylated upon aging are indicative of biological aging.


Asunto(s)
Envejecimiento/genética , Islas de CpG , Metilación de ADN , Biología Computacional/métodos , Epigénesis Genética , Marcadores Genéticos , Humanos , Esperanza de Vida
9.
Gene ; 527(1): 339-43, 2013 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-23791658

RESUMEN

Transcription is known to be affected by the rotational setting of the transcription response elements within nucleosomes. We studied the rotational positioning of the TATA box, the most universal promoter motif. We applied a bioinformatic high-resolution nucleosome mapping technique to eukaryotic promoters. Our results show that the nucleosome DNA sequence harboring the TATA box encodes alternative rotational positions for the same piece of DNA. This may serve for switching the gene activity on and off.


Asunto(s)
Nucleosomas/genética , TATA Box , Animales , Secuencia de Bases , Mapeo Cromosómico , Regulación de la Expresión Génica , Humanos , Modelos Genéticos , Plantas/genética , Análisis de Secuencia de ADN
10.
Gene ; 489(1): 6-10, 2011 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-21925247

RESUMEN

High resolution sequence-directed nucleosome mapping is applied to 36,000 sequences containing splice junctions, from five different species. As it has been also shown in previous studies, the junctions are found to be preferentially located within nucleosomes. Moreover, the orientation of guanine residues at the GT- and AG-ends of introns within the nucleosomes is such that the guanines are positioned nearest to the surface of histone octamers, 3 and 4 bases upstream from the local DNA pseudo-dyads passing through minor grooves oriented outwards. Since the guanine residues are the most vulnerable to spontaneous damage within the cell (primarily, depurination and oxidation) such positioning of the splice junctions minimizes the damage that is caused by free radicals and highly reactive metabolites.


Asunto(s)
Intrones , Nucleosomas/genética , Animales , Secuencia de Bases , Pollos/genética , Perros , Histonas/metabolismo , Humanos , Ratones , Datos de Secuencia Molecular , Pez Cebra/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA