Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Annu Rev Biochem ; 93(1): 317-338, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39094034

RESUMEN

Discovered in 1993, inositol pyrophosphates are evolutionarily conserved signaling metabolites whose versatile modes of action are being increasingly appreciated. These include their emerging roles as energy regulators, phosphodonors, steric/allosteric regulators, and G protein-coupled receptor messengers. Through studying enzymes that metabolize inositol pyrophosphates, progress has also been made in elucidating the various cellular and physiological functions of these pyrophosphate-containing, energetic molecules. The two main forms of inositol pyrophosphates, 5-IP7 and IP8, synthesized respectively by inositol-hexakisphosphate kinases (IP6Ks) and diphosphoinositol pentakisphosphate kinases (PPIP5Ks), regulate phosphate homeostasis, ATP synthesis, and several other metabolic processes ranging from insulin secretion to cellular energy utilization. Here, we review the current understanding of the catalytic and regulatory mechanisms of IP6Ks and PPIP5Ks, as well as their counteracting phosphatases. We also highlight the genetic and cellular evidence implicating inositol pyrophosphates as essential mediators of mammalian metabolic homeostasis.


Asunto(s)
Fosfatos de Inositol , Fosfotransferasas (Aceptor del Grupo Fosfato) , Transducción de Señal , Humanos , Fosfatos de Inositol/metabolismo , Animales , Fosfotransferasas (Aceptor del Grupo Fosfato)/metabolismo , Fosfotransferasas (Aceptor del Grupo Fosfato)/genética , Homeostasis , Metabolismo Energético , Adenosina Trifosfato/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Monoéster Fosfórico Hidrolasas/genética
2.
Biochem J ; 480(6): 433-453, 2023 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-36896917

RESUMEN

Myo-inositol tris/tetrakisphosphate kinases (ITPKs) catalyze diverse phosphotransfer reactions with myo-inositol phosphate and myo-inositol pyrophosphate substrates. However, the lack of structures of nucleotide-coordinated plant ITPKs thwarts a rational understanding of phosphotransfer reactions of the family. Arabidopsis possesses a family of four ITPKs of which two isoforms, ITPK1 and ITPK4, control inositol hexakisphosphate and inositol pyrophosphate levels directly or by provision of precursors. Here, we describe the specificity of Arabidopsis ITPK4 to pairs of enantiomers of diverse inositol polyphosphates and show how substrate specificity differs from Arabidopsis ITPK1. Moreover, we provide a description of the crystal structure of ATP-coordinated AtITPK4 at 2.11 Šresolution that, along with a description of the enantiospecificity of the enzyme, affords a molecular explanation for the diverse phosphotransferase activity of this enzyme. That Arabidopsis ITPK4 has a KM for ATP in the tens of micromolar range, potentially explains how, despite the large-scale abolition of InsP6, InsP7 and InsP8 synthesis in Atitpk4 mutants, Atitpk4 lacks the phosphate starvation responses of Atitpk1 mutants. We further demonstrate that Arabidopsis ITPK4 and its homologues in other plants possess an N-terminal haloacid dehalogenase-like fold not previously described. The structural and enzymological information revealed will guide elucidation of ITPK4 function in diverse physiological contexts, including InsP8-dependent aspects of plant biology.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Difosfatos , Fosfatos de Inositol , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/química , Ácido Fítico , Adenosina Trifosfato
3.
Proc Natl Acad Sci U S A ; 117(8): 4117-4124, 2020 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-32047038

RESUMEN

The Cullin-RING ligases (CRLs) are the largest family of ubiquitin E3s activated by neddylation and regulated by the deneddylase COP9 signalosome (CSN). The inositol polyphosphate metabolites promote the formation of CRL-CSN complexes, but with unclear mechanism of action. Here, we provide structural and genetic evidence supporting inositol hexakisphosphate (IP6) as a general CSN cofactor recruiting CRLs. We determined the crystal structure of IP6 in complex with CSN subunit 2 (CSN2), based on which we identified the IP6-corresponding electron density in the cryoelectron microscopy map of a CRL4A-CSN complex. IP6 binds to a cognate pocket formed by conserved lysine residues from CSN2 and Rbx1/Roc1, thereby strengthening CRL-CSN interactions to dislodge the E2 CDC34/UBE2R from CRL and to promote CRL deneddylation. IP6 binding-deficient Csn2K70E/K70E knockin mice are embryonic lethal. The same mutation disabled Schizosaccharomyces pombe Csn2 from rescuing UV-hypersensitivity of csn2-null yeast. These data suggest that CRL transition from the E2-bound active state to the CSN-bound sequestered state is critically assisted by an interfacial IP6 small molecule, whose metabolism may be coupled to CRL-CSN complex dynamics.


Asunto(s)
Complejo del Señalosoma COP9/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Sitios de Unión , Calorimetría/métodos , Eliminación de Gen , Técnicas de Sustitución del Gen , Genes Transgénicos Suicidas , Genotipo , Células HEK293 , Humanos , Ratones , Modelos Moleculares , Unión Proteica , Conformación Proteica , Saccharomyces cerevisiae , Organismos Libres de Patógenos Específicos , Enzimas Ubiquitina-Conjugadoras/genética , Enzimas Ubiquitina-Conjugadoras/metabolismo
4.
J Biol Chem ; 295(30): 10281-10292, 2020 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-32493769

RESUMEN

Inositol hexakisphosphate (IP6) is an abundant metabolite synthesized from inositol 1,3,4,5,6-pentakisphosphate (IP5) by the single IP5 2-kinase (IP5K). Genetic and biochemical studies have shown that IP6 usually functions as a structural cofactor in protein(s) mediating mRNA export, DNA repair, necroptosis, 3D genome organization, HIV infection, and cullin-RING ligase (CRL) deneddylation. However, it remains unknown whether pharmacological perturbation of cellular IP6 levels affects any of these processes. Here, we performed screening for small molecules that regulate human IP5K activity, revealing that the antiparasitic drug and polysulfonic compound suramin efficiently inhibits IP5K in vitro and in vivo The results from docking experiments and biochemical validations suggested that the suramin targets IP5K in a distinct bidentate manner by concurrently binding to the ATP- and IP5-binding pockets, thereby inhibiting both IP5 phosphorylation and ATP hydrolysis. NF449, a suramin analog with additional sulfonate moieties, more potently inhibited IP5K. Both suramin and NF449 disrupted IP6-dependent sequestration of CRL by the deneddylase COP9 signalosome, thereby affecting CRL activity cycle and component dynamics in an IP5K-dependent manner. Finally, nontoxic doses of suramin, NF449, or NF110 exacerbate the loss of cell viability elicited by the neddylation inhibitor and clinical trial drug MLN4924/pevonedistat, suggesting synergistic ef-fects. Suramin and its analogs provide structural templates for designing potent and specific IP5K inhibitors, which could be used in combination therapy along with MLN4924/pevonedistat. IP5K is a potential mechanistic target of suramin, accounting for suramin's therapeutic effects.


Asunto(s)
Bencenosulfonatos/farmacología , Proteínas Cullin/metabolismo , Ciclopentanos/farmacología , Inhibidores Enzimáticos/farmacología , Proteínas de Neoplasias , Neoplasias , Fosfotransferasas (Aceptor de Grupo Alcohol) , Ácido Fítico/metabolismo , Pirimidinas/farmacología , Suramina/farmacología , Células HCT116 , Células HEK293 , Humanos , Proteínas de Neoplasias/antagonistas & inhibidores , Proteínas de Neoplasias/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/enzimología , Neoplasias/patología , Fosfotransferasas (Aceptor de Grupo Alcohol)/antagonistas & inhibidores , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo
5.
JAAPA ; 28(3): 41-5, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25710403

RESUMEN

Sodium polystyrene sulfonate (SPS), FDA-approved more than 60 years ago for treating hyperkalemia, is an ion exchange resin that works by exchanging sodium for potassium in the colon. Though widely used in clinical practice, SPS use is not supported by well-designed clinical trials. In 2009, the FDA issued a warning that SPS was associated with colonic necrosis and other serious gastrointestinal adverse reactions. This article reviews the pros and cons of SPS therapy.


Asunto(s)
Resinas de Intercambio de Catión/efectos adversos , Enfermedades Gastrointestinales/inducido químicamente , Hiperpotasemia/tratamiento farmacológico , Necrosis/inducido químicamente , Poliestirenos/efectos adversos , Colon/patología , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA