Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Oncotarget ; 8(5): 8475-8483, 2017 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-28035072

RESUMEN

Here, we evaluated whether the overexpression of transcriptionally inactive ΔNp73 cooperates with PML/RARA fusion protein in the induction of an APL-leukemic phenotype, as well as its role in vitro in proliferation, myeloid differentiation, and drug-induced apoptosis. Using lentiviral gene transfer, we showed in vitro that ΔNp73 overexpression resulted in increased proliferation in murine bone marrow (BM) cells from hCG-PML/RARA transgenic mice and their wild-type (WT) counterpart, with no accumulation of cells at G2/M or S phases; instead, ΔNp73-expressing cells had a lower rate of induced apoptosis. Next, we evaluated the effect of ΔNp73 on stem-cell self-renewal and myeloid differentiation. Primary BM cells lentivirally infected with human ΔNp73 were not immortalized in culture and did not present significant changes in the percentage of CD11b. Finally, we assessed the impact of ΔNp73 on leukemogenesis or its possible cooperation with PML/RARA fusion protein in the induction of an APL-leukemic phenotype. After 120 days of follow-up, all transplanted mice were clinically healthy and, no evidence of leukemia/myelodysplasia was apparent. Taken together, our data suggest that ΔNp73 had no leukemic transformation capacity by itself and apparently did not cooperate with the PML/RARA fusion protein to induce a leukemic phenotype in a murine BM transplantation model. In addition, the forced expression of ΔNp73 in murine BM progenitors did not alter the ATRA-induced differentiation rate in vitro or induce aberrant cell proliferation, but exerted an important role in cell survival, providing resistance to drug-induced apoptosis.


Asunto(s)
Apoptosis , Leucemia/metabolismo , Células Madre Neoplásicas/metabolismo , Proteína de la Leucemia Promielocítica/metabolismo , Receptor alfa de Ácido Retinoico/metabolismo , Proteína Tumoral p73/metabolismo , Animales , Antimetabolitos Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Trasplante de Médula Ósea , Catepsina G/genética , Catepsina G/metabolismo , Diferenciación Celular , Proliferación Celular , Autorrenovación de las Células , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Transformación Celular Neoplásica/patología , Células Cultivadas , Citarabina/farmacología , Regulación Leucémica de la Expresión Génica , Predisposición Genética a la Enfermedad , Leucemia/tratamiento farmacológico , Leucemia/genética , Leucemia/patología , Ratones Endogámicos NOD , Ratones SCID , Ratones Transgénicos , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/patología , Fenotipo , Proteína de la Leucemia Promielocítica/genética , Receptor alfa de Ácido Retinoico/genética , Transducción de Señal , Factores de Tiempo , Transfección , Proteína Tumoral p73/genética , Regulación hacia Arriba
2.
Oxid Med Cell Longev ; 2015: 604658, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26543520

RESUMEN

An increasing number of studies have proposed a strong correlation between reactive oxygen species (ROS)-induced oxidative stress (OS) and the pathogenesis of Alzheimer's disease (AD). With over five million people diagnosed in the United States alone, AD is the most common type of dementia worldwide. AD includes progressive neurodegeneration, followed by memory loss and reduced cognitive ability. Characterized by the formation of amyloid-beta (Aß) plaques as a hallmark, the connection between ROS and AD is compelling. Analyzing the ROS response of essential proteins in the amyloidogenic pathway, such as amyloid-beta precursor protein (APP) and beta-secretase (BACE1), along with influential signaling programs of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and c-Jun N-terminal kinase (JNK), has helped visualize the path between OS and Aß overproduction. In this review, attention will be paid to significant advances in the area of OS, epigenetics, and their influence on Aß plaque assembly. Additionally, we aim to discuss available treatment options for AD that include antioxidant supplements, Asian traditional medicines, metal-protein-attenuating compounds, and histone modifying inhibitors.


Asunto(s)
Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Epigénesis Genética , Estrés Oxidativo , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Inhibidores de Histona Desacetilasas/uso terapéutico , Humanos , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , FN-kappa B/metabolismo , Especies Reactivas de Oxígeno/metabolismo
3.
J Appl Physiol (1985) ; 119(8): 944-51, 2015 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-25977452

RESUMEN

The understanding of complex molecular mechanisms underlying heart failure (HF) is constantly under revision. Recent research has paid much attention to understanding the growing number of patients that exhibit HF symptoms yet have an ejection fraction similar to a normal phenotype. Termed heart failure with preserved ejection fraction (HFpEF), this novel hypothesis traces its roots to a proinflammatory state initiated in part by the existence of comorbidities that create a favorable environment for the production of reactive oxygen species (ROS). Triggering a cascade that involves reduced nitric oxide (NO) availability, elevated ROS levels in the coronary endothelium eventually contribute to hypertrophy and increased resting tension in cardiomyocytes. Improved understanding of the molecular pathways associated with HFpEF has led to studies that concentrate on reducing ROS production in the heart, boosting NO availability, and increasing exercise capacity for HFpEF patients. This review will explore the latest research into the role of ROS and NO in the progression of HFpEF, as well as discuss the encouraging results of numerous therapeutic studies.


Asunto(s)
Insuficiencia Cardíaca/metabolismo , Corazón/fisiopatología , Miocardio/metabolismo , Óxido Nítrico/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Insuficiencia Cardíaca/fisiopatología , Humanos , Miocitos Cardíacos/metabolismo
4.
Nat Cell Biol ; 17(8): 1036-48, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26192440

RESUMEN

Robust mechanisms to control cell proliferation have evolved to maintain the integrity of organ architecture. Here, we investigated how two critical proliferative pathways, Myc and E2f, are integrated to control cell cycles in normal and Rb-deficient cells using a murine intestinal model. We show that Myc and E2f1-3 have little impact on normal G1-S transitions. Instead, they synergistically control an S-G2 transcriptional program required for normal cell divisions and maintaining crypt-villus integrity. Surprisingly, Rb deficiency results in the Myc-dependent accumulation of E2f3 protein and chromatin repositioning of both Myc and E2f3, leading to the 'super activation' of a G1-S transcriptional program, ectopic S phase entry and rampant cell proliferation. These findings reveal that Rb-deficient cells hijack and redeploy Myc and E2f3 from an S-G2 program essential for normal cell cycles to a G1-S program that re-engages ectopic cell cycles, exposing an unanticipated addiction of Rb-null cells on Myc.


Asunto(s)
Puntos de Control del Ciclo Celular , Proliferación Celular , Factores de Transcripción E2F/metabolismo , Células Epiteliales/metabolismo , Intestino Delgado/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteína de Retinoblastoma/deficiencia , Animales , Sitios de Unión , Ensamble y Desensamble de Cromatina , Factores de Transcripción E2F/deficiencia , Factores de Transcripción E2F/genética , Factor de Transcripción E2F1/genética , Factor de Transcripción E2F1/metabolismo , Factor de Transcripción E2F2/genética , Factor de Transcripción E2F2/metabolismo , Factor de Transcripción E2F3/genética , Factor de Transcripción E2F3/metabolismo , Células Epiteliales/patología , Femenino , Puntos de Control de la Fase G1 del Ciclo Celular , Puntos de Control de la Fase G2 del Ciclo Celular , Regulación de la Expresión Génica , Genotipo , Intestino Delgado/patología , Masculino , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Fenotipo , Regiones Promotoras Genéticas , Proteínas Proto-Oncogénicas c-myc/deficiencia , Proteínas Proto-Oncogénicas c-myc/genética , Proteína de Retinoblastoma/genética , Puntos de Control de la Fase S del Ciclo Celular , Transducción de Señal , Factores de Tiempo , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA