Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Phys Rev Lett ; 117(19): 190501, 2016 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-27858431

RESUMEN

Measurement-device-independent quantum key distribution (MDIQKD) with the decoy-state method negates security threats of both the imperfect single-photon source and detection losses. Lengthening the distance and improving the key rate of quantum key distribution (QKD) are vital issues in practical applications of QKD. Herein, we report the results of MDIQKD over 404 km of ultralow-loss optical fiber and 311 km of a standard optical fiber while employing an optimized four-intensity decoy-state method. This record-breaking implementation of the MDIQKD method not only provides a new distance record for both MDIQKD and all types of QKD systems but also, more significantly, achieves a distance that the traditional Bennett-Brassard 1984 QKD would not be able to achieve with the same detection devices even with ideal single-photon sources. This work represents a significant step toward proving and developing feasible long-distance QKD.

2.
Rev Sci Instrum ; 91(2): 024705, 2020 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-32113405

RESUMEN

Quantum key distribution (QKD) offers the ability of information theoretic security key exchange. The secure key rate is an important indicator for the practical QKD systems, which determines what kinds of applications can be supported. One most effective way to enhance the secure key rate is to increase the system repetition frequency. Here, we report an implementation of a high-speed DC-coupled modulator driving circuit with a repetition rate of up to 5 GHz. The circuit outputs a multi-amplitude return-to-zero pattern pulse with a maximum amplitude of 7.5 V. The design adapts to the various electro-optic modulators widely employed in QKD systems. The minimum pulse width is measured as 75 ps, with the relative noise level less than 1.5% for all the output amplitudes under random modulation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA