Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 20(19)2019 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-31546735

RESUMEN

Cervical cancer with early metastasis of the primary tumor is associated with poor prognosis and poor therapeutic outcomes. Since epithelial-to-mesenchymal transition (EMT) plays a role in acquisition of the ability to invade the pelvic lymph nodes and surrounding tissue, it is important to clarify the molecular mechanism underlying EMT in cervical cancer. RhoE, also known as Rnd3, is a member of the Rnd subfamily of Rho GTPases. While previous reports have suggested that RhoE may act as either a positive or a negative regulator of cancer metastasis and EMT, the role of RhoE during EMT in cervical cancer cells remains unclear. The present study revealed that RhoE expression was upregulated during transforming growth factor-ß (TGF-ß)-mediated EMT in human cervical cancer HeLa cells. Furthermore, reduced RhoE expression enhanced TGF-ß-mediated EMT and migration of HeLa cells. In addition, we demonstrated that RhoE knockdown elevated RhoA activity and a ROCK inhibitor partially suppressed the acceleration of TGF-ß-mediated EMT by RhoE knockdown. These results indicate that RhoE suppresses TGF-ß-mediated EMT, partially via RhoA/ROCK signaling in cervical cancer HeLa cells.


Asunto(s)
Transición Epitelial-Mesenquimal/genética , Factor de Crecimiento Transformador beta/metabolismo , Proteínas de Unión al GTP rho/genética , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Transición Epitelial-Mesenquimal/efectos de los fármacos , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Células HeLa , Humanos , Factor de Crecimiento Transformador beta/farmacología
2.
Biol Pharm Bull ; 39(5): 807-14, 2016 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-26902224

RESUMEN

Factor for adipocyte differentiation 24 (fad24) is a positive regulator of adipogenesis. We previously found that human fad24 is abundantly expressed in skeletal muscle. However, the function of fad24 in skeletal muscle remains largely unknown. Because skeletal muscle is a highly regenerative tissue, we focused on the function of fad24 in skeletal muscle regeneration. In this paper, we investigated the role of fad24 in the cell cycle re-entry of quiescent C2C12 myoblasts-mimicked satellite cells. The expression levels of fad24 and histone acetyltransferase binding to ORC1 (hbo1), a FAD24-interacting factor, were elevated at the early phase of the regeneration process in response to cardiotoxin-induced muscle injury. The knockdown of fad24 inhibited the proliferation of quiescent myoblasts, whereas fad24 knockdown did not affect differentiation. S phase entry following serum activation is abrogated by fad24 knockdown in quiescent cells. Furthermore, fad24 knockdown cells show a marked accumulation of p27(Kip1) protein. These results suggest that fad24 may have an important role in the S phase re-entry of quiescent C2C12 cells through the regulation of p27(Kip1) at the protein level.


Asunto(s)
Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/metabolismo , Mioblastos/metabolismo , Proteínas Nucleares/genética , Adipogénesis/fisiología , Animales , Proteínas de Ciclo Celular , Diferenciación Celular/fisiología , Línea Celular , Ratones Endogámicos C57BL , Músculo Esquelético/metabolismo , Mioblastos/fisiología , Complejo de Reconocimiento del Origen/genética , Fase de Descanso del Ciclo Celular , Fase S
3.
Biol Pharm Bull ; 39(5): 849-55, 2016 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-26948083

RESUMEN

Anchorage-independent growth is one of the defining characteristics of cancer cells. Many oncogenes and tumor suppressor genes are involved in regulating this type of growth. Factor for adipocyte differentiation 104 gene (fad104) is a regulator of adipogenesis and osteogenesis. Previously, we reported that fad104 suppressed metastasis as well as invasion of melanoma cells. However, it is unclear whether fad104 is involved in malignant transformation, which is associated with metastasis. In this study, we revealed that fad104 negatively regulated the colony forming activity of melanoma cells. The presence of the N-terminal region of FAD104 was required for the regulation of malignant transformation of melanoma cells. In addition, the deletion mutant of FAD104 that contained the N-terminal region and transmembrane domain interacted with signal transducer and activator of transcription 3 (STAT3) and suppressed STAT3 activity. However, the deletion mutant of FAD104 lacking the N-terminal region did not influence the interaction with STAT3 or suppress the STAT3 activity. Moreover, FAD104 interacted with the C-terminal region of STAT3. In summary, we demonstrated that fad104 suppressed anchorage-independent growth of melanoma cells, and that the N-terminal region of FAD104 is essential for inhibiting malignant transformation and STAT3 activity.


Asunto(s)
Transformación Celular Neoplásica/metabolismo , Fibronectinas/metabolismo , Melanoma/metabolismo , Factor de Transcripción STAT3/metabolismo , Adipogénesis , Animales , Línea Celular Tumoral , Fibronectinas/genética , Humanos , Ratones , Osteogénesis
4.
J Biol Chem ; 288(44): 31772-83, 2013 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-24052261

RESUMEN

Osteogenesis is a complex process that is orchestrated by several growth factors, extracellular cues, signaling molecules, and transcriptional factors. Understanding the mechanisms of bone formation is pivotal for clarifying the pathogenesis of bone diseases. Previously, we reported that fad104 (factor for adipocyte differentiation 104), a novel positive regulator of adipocyte differentiation, negatively regulated the differentiation of mouse embryonic fibroblasts into osteocytes. However, the physiological role of fad104 in bone formation has not been elucidated. Here, we clarified the role of fad104 in bone formation in vivo and in vitro. fad104 disruption caused craniosynostosis-like premature ossification of the calvarial bone. Furthermore, analyses using primary calvarial cells revealed that fad104 negatively regulated differentiation and BMP/Smad signaling pathway. FAD104 interacted with Smad1/5/8. The N-terminal region of FAD104, which contains a proline-rich motif, was capable of binding to Smad1/5/8. We demonstrated that down-regulation of Smad1/5/8 phosphorylation by FAD104 is dependent on the N-terminal region of FAD104 and that fad104 functions as a novel negative regulator of BMP/Smad signaling and is required for proper development for calvarial bone. These findings will aid a comprehensive description of the mechanism that controls normal and premature calvarial ossification.


Asunto(s)
Diferenciación Celular/fisiología , Fibronectinas/biosíntesis , Regulación del Desarrollo de la Expresión Génica/fisiología , Osteogénesis/fisiología , Transducción de Señal/fisiología , Cráneo/embriología , Adipogénesis/fisiología , Animales , Células Cultivadas , Craneosinostosis/embriología , Craneosinostosis/genética , Craneosinostosis/patología , Regulación hacia Abajo/fisiología , Fibronectinas/genética , Metaloproteinasas de la Matriz Secretadas/genética , Metaloproteinasas de la Matriz Secretadas/metabolismo , Ratones , Ratones Noqueados , Fosforilación/fisiología , Estructura Terciaria de Proteína , Proteínas Smad/genética , Proteínas Smad/metabolismo
5.
Int J Mol Sci ; 15(12): 22743-56, 2014 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-25501330

RESUMEN

KCNK10, a member of tandem pore domain potassium channel family, gives rise to leak K+ currents. It plays important roles in stabilizing the negative resting membrane potential and in counterbalancing depolarization. We previously demonstrated that kcnk10 expression is quickly elevated during the early stage of adipogenesis of 3T3-L1 cells and that reduction of kcnk10 expression inhibits adipocyte differentiation. However, the molecular mechanism of KCNK10 in adipocyte differentiation remains unclear. Here we revealed that kcnk10 is induced by 3-isobutyl-1-methylxanthine, a cyclic nucleotide phosphodiesterase inhibitor and a potent inducer of adipogenesis, during the early stage of adipocyte differentiation. We also demonstrated that KCNK10 functions as a positive regulator of mitotic clonal expansion (MCE), a necessary process for terminal differentiation. The reduction of kcnk10 expression repressed the expression levels of CCAAT/enhancer-binding protein ß (C/EBPß) and C/EBPδ as well as the phosphorylation level of Akt during the early phase of adipogenesis. In addition, knockdown of kcnk10 expression suppressed insulin-induced Akt phosphorylation. These results indicate that KCNK10 contributes to the regulation of MCE through the control of C/EBPß and C/EBPδ expression and insulin signaling.


Asunto(s)
Adipocitos/citología , Adipocitos/metabolismo , Adipogénesis/genética , Diferenciación Celular/genética , Evolución Clonal/genética , Mitosis/genética , Canales de Potasio de Dominio Poro en Tándem/genética , Células 3T3-L1 , Animales , Proteína beta Potenciadora de Unión a CCAAT/metabolismo , Proteína delta de Unión al Potenciador CCAAT/metabolismo , Expresión Génica , Técnicas de Silenciamiento del Gen , Insulina/metabolismo , Ratones , Fosforilación , Transducción de Señal
6.
Biochem Biophys Res Commun ; 438(2): 301-5, 2013 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-23886952

RESUMEN

In previous studies, we identified a novel gene, factor for adipocyte differentiation 24 (fad24), which plays an important role during the early stages of adipogenesis in mouse 3T3-L1 cells. Moreover, overexpression of fad24 increased the number of smaller adipocytes in white adipose tissue and improved glucose metabolic activity in mice, thus indicating that fad24 functions as a regulator of adipogenesis in vivo. However, the physiological roles of fad24 in vivo are largely unknown. In this study, we attempted to generate fad24-deficient mice by gene targeting. No fad24-null mutants were recovered after embryonic day 9.5 (E9.5). Although fad24-null embryos were detected in an expected Mendelian ratio of genotypes at E3.5, none of the homozygous mutants developed into blastocysts. In vitro culture experiments revealed that fad24-null embryos develop normally to the morula stage but acquire growth defects during subsequent stages. The number of nuclei decreased in fad24-deficient morulae compared with that in wild-type ones. These results strongly suggested that fad24 is essential for pre-implantation in embryonic development, particularly for the progression to the blastocyst stage.


Asunto(s)
Adipogénesis , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/fisiología , Blastocisto/citología , Regulación del Desarrollo de la Expresión Génica , Proteínas Nucleares/genética , Proteínas Nucleares/fisiología , Células 3T3-L1 , Animales , Proteínas de Ciclo Celular , Cruzamientos Genéticos , Células Madre Embrionarias/citología , Femenino , Genotipo , Glucosa/metabolismo , Heterocigoto , Homocigoto , Masculino , Ratones , Ratones Endogámicos C57BL , Mórula/metabolismo , Mutación , Factores de Tiempo
7.
Mol Biol Rep ; 39(4): 4989-96, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22160571

RESUMEN

Histone eviction and deposition are critical steps in many nuclear processes. The histone H3/H4 chaperone Asf1p is highly conserved and is involved in DNA replication, DNA repair, and transcription. To identify the factors concerned with anti-silencing function 1 (ASF1), we purified Asf1p-associated factors from the yeast Saccharomyces cerevisiae by a GST pull-down experiment, and mass spectrometry analysis was performed. Several factors are specifically associated with Asf1p, including Vip1p. VIP1 is conserved from yeast to humans and encodes inositol hexakisphoshate and inositol heptakisphosphate kinase. Vip1p interacted with Asf1p as a dimer or in a complex with another protein(s). Deletion of VIP1 did not affect the interaction between Asf1p and other Asf1p-associated factors. An in vitro GST pull-down assay indicated a direct interaction between Asf1p and Vip1p, and the interaction between the two factors in vivo was detected by an immunoprecipitation experiment. Furthermore, genetic experiments revealed that VIP1 disruption increased sensitivity to 6-azauracil (6-AU), but not to DNA-damaging reagents in wild-type and ASF1-deleted strains. It is thought that 6-AU decreases nucleotide levels and reduces transcription elongation. These observations suggest that the association of Asf1p and Vip1p may be implicated in transcription elongation.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Chaperonas de Histonas/metabolismo , Chaperonas Moleculares/metabolismo , Fosfotransferasas (Aceptor del Grupo Fosfato)/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Daño del ADN , Replicación del ADN , Eliminación de Gen , Unión Proteica , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Transcripción Genética
8.
Exp Cell Res ; 317(15): 2110-23, 2011 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-21704616

RESUMEN

Factor for adipocyte differentiation 104 (fad104) is a regulator of adipogenesis and osteogenesis. Our previous study showed that fad104-deficient mice died immediately after birth, suggesting fad104 to be essential for neonatal survival. However, the cause of this rapid death is unclear. Here, we demonstrate the role of fad104 in neonatal survival. Phenotypic and morphological analyses showed that fad104-deficient mice died due to cyanosis-associated lung dysplasia including atelectasis. Furthermore, immunohistochemistry revealed that FAD104 was strongly expressed in ATII cells in the developing lung. Most importantly, the ATII cells in lungs were immature, and impaired the expression of surfactant-associated proteins. Collectively, these results indicate that fad104 has an indispensable role in lung maturation, especially the maturation and differentiation of ATII cells.


Asunto(s)
Fibronectinas/fisiología , Pulmón/embriología , Adipogénesis , Animales , Diferenciación Celular , Embrión de Mamíferos/metabolismo , Fibronectinas/metabolismo , Inmunohistoquímica , Pulmón/citología , Pulmón/metabolismo , Ratones , Ratones Noqueados
9.
Biol Pharm Bull ; 35(3): 380-4, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22382325

RESUMEN

We previously identified Ku proteins and interleukin enhancer binding factor 3 (ILF3) as cofactors for the nuclear receptor farnesoid X receptor and liver receptor homolog-1, respectively. Here we provide further evidence that these cofactors modulate the promoter activity of the nuclear receptor thyroid hormone receptor (TR) target gene, thyroid-stimulating hormone alpha (TSHα), which is negatively regulated by the TR ligand triiodothyronine (T(3)). Ku proteins suppressed TSHα promoter activity independent of T(3), whereas ILF3 enhanced TSHα activity, especially in the presence of T(3). Taken together, our results suggest that Ku proteins and ILF3 function as co-regulators for TR-mediated TSHα expression.


Asunto(s)
ADN Helicasas/metabolismo , Hormonas Glicoproteicas de Subunidad alfa/metabolismo , Proteínas del Factor Nuclear 90/metabolismo , Receptores de Hormona Tiroidea/metabolismo , Proteína Quinasa Activada por ADN/metabolismo , Glutatión Transferasa/metabolismo , Hormonas Glicoproteicas de Subunidad alfa/genética , Células HEK293 , Células HeLa , Humanos , Autoantígeno Ku , Proteínas Nucleares/metabolismo , Regiones Promotoras Genéticas , Triyodotironina/metabolismo
10.
Biochem J ; 437(3): 531-40, 2011 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-21554248

RESUMEN

LRH-1 (liver receptor homologue-1), a transcription factor and member of the nuclear receptor superfamily, regulates the expression of its target genes, which are involved in bile acid and cholesterol homoeostasis. However, the molecular mechanisms of transcriptional control by LRH-1 are not completely understood. Previously, we identified Ku80 and Ku70 as LRH-1-binding proteins and reported that they function as co-repressors. In the present study, we identified an additional LRH-1-binding protein, ILF3 (interleukin enhancer-binding factor 3). ILF3 formed a complex with LRH-1 and the other two nuclear receptor co-activators PRMT1 (protein arginine methyltransferase 1) and PGC-1α (peroxisome proliferator-activated receptor γ co-activator-1α). We demonstrated that ILF3, PRMT1 and PGC-1α were recruited to the promoter region of the LRH-1-regulated SHP (small heterodimer partner) gene, encoding one of the nuclear receptors. ILF3 enhanced SHP gene expression in co-operation with PRMT1 and PGC-1α through the C-terminal region of ILF3. In addition, we found that the small interfering RNA-mediated down-regulation of ILF3 expression led to a reduction in the occupancy of PGC-1α at the SHP promoter and SHP expression. Taken together, our results suggest that ILF3 functions as a novel LRH-1 co-activator by acting synergistically with PRMT1 and PGC-1α, thereby promoting LRH-1-dependent gene expression.


Asunto(s)
Regulación de la Expresión Génica/fisiología , Proteínas de Choque Térmico/metabolismo , Proteínas del Factor Nuclear 90/metabolismo , Proteína-Arginina N-Metiltransferasas/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Proteínas Represoras/metabolismo , Factores de Transcripción/metabolismo , Inmunoprecipitación de Cromatina , Células HEK293 , Células HeLa , Proteínas de Choque Térmico/genética , Células Hep G2 , Humanos , Proteínas del Factor Nuclear 90/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Regiones Promotoras Genéticas , Unión Proteica , Proteína-Arginina N-Metiltransferasas/genética , Receptores Citoplasmáticos y Nucleares/genética , Proteínas Represoras/genética , Factores de Transcripción/genética
11.
Biol Pharm Bull ; 34(8): 1257-63, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21804215

RESUMEN

To clarify the molecular mechanism of adipocyte differentiation, we previously isolated a novel gene, factor for adipocyte differentiation (fad) 158, whose expression was induced during the earliest stages of adipogenesis, and its product was localized to the endoplasmic reticulum. We found that the knockdown of fad158 expression prevented the differentiation of 3T3-L1 cells into adipocytes. In addition, over-expression of fad158 promoted the differentiation of NIH-3T3 cells, which do not usually differentiate into adipocytes. Although these findings strongly suggest that fad158 has a crucial role in regulating adipocyte differentiation, the physiological role of the gene is still unclear. In this study, we generated mice in which fad158 expression was deleted. The fad158-deficient mice did not show remarkable changes in body weight or the weight of white adipose tissue on a chow diet, but had significantly lower body weights and fat mass than wild-type mice when fed a high-fat diet. Furthermore, although the disruption of fad158 did not influence insulin sensitivity on the chow diet, it improved insulin resistance induced by the high-fat diet. These results indicate that fad158 is a key factor in the development of obesity and insulin resistance caused by a high-fat diet.


Asunto(s)
Adipocitos/citología , Adipogénesis/genética , Tejido Adiposo Blanco/metabolismo , Grasas de la Dieta/efectos adversos , Resistencia a la Insulina/genética , Proteínas de la Membrana/genética , Obesidad/genética , Aumento de Peso/genética , Células 3T3-L1 , Animales , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Obesidad/metabolismo
12.
Biochem Biophys Res Commun ; 397(2): 187-91, 2010 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-20493170

RESUMEN

Fad104 (factor for adipocyte differentiation 104) is a novel gene expressed temporarily in the early stages of adipocyte differentiation. Previously, we showed that fad104 promotes adipocyte differentiation in mouse 3T3-L1 cells and mouse embryonic fibroblasts (MEFs). Furthermore, we reported that implanted wild-type MEFs could develop into adipocytes, whereas fad104-deficient MEFs could not. Interestingly, bone-like tissues were only observed in the implants derived from fad104-deficient MEFs. This result implies that fad104 is involved in osteoblast differentiation. However, the functions of fad104 during osteogenesis are unknown. In this paper, we show that fad104 negatively regulates osteoblast differentiation. During the differentiation process, the level of fad104 expression decreased. Deletion of fad104 facilitated osteoblast differentiation in MEFs, and elevated the level of runx2, a master regulator of osteoblast differentiation. Disruption of fad104 suppressed BMP-2-mediated adipocyte differentiation in MEFs. In conclusion, we demonstrate that fad104 reciprocally regulates differentiation of adipocytes and osteoblast; functions as a positive regulator in adipocyte differentiation and as a negative regulator in osteoblast differentiation.


Asunto(s)
Adipogénesis/genética , Diferenciación Celular/genética , Fibronectinas/fisiología , Osteoblastos/citología , Animales , Células Cultivadas , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Fibronectinas/genética , Eliminación de Gen , Ratones , Ratones Mutantes
13.
Exp Cell Res ; 315(5): 809-19, 2009 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-19138685

RESUMEN

The molecular mechanisms at the beginning of adipogenesis remain unknown. Previously, we identified a novel gene, fad104 (factor for adipocyte differentiation 104), transiently expressed at the early stage of adipocyte differentiation. Since the knockdown of the expression of fad104 dramatically repressed adipogenesis, it is clear that fad104 plays important roles in adipocyte differentiation. However, the physiological roles of fad104 are still unknown. In this study, we generated fad104-deficient mice by gene targeting. Although the mice were born in the expected Mendelian ratios, all died within 1 day of birth, suggesting fad104 to be crucial for survival after birth. Furthermore, analyses of mouse embryonic fibroblasts (MEFs) prepared from fad104-deficient mice provided new insights into the functions of fad104. Disruption of fad104 inhibited adipocyte differentiation and cell proliferation. In addition, cell adhesion and wound healing assays using fad104-deficient MEFs revealed that loss of fad104 expression caused a reduction in stress fiber formation, and notably delayed cell adhesion, spreading and migration. These results indicate that fad104 is essential for the survival of newborns just after birth and important for cell proliferation, adhesion, spreading and migration.


Asunto(s)
Movimiento Celular/genética , Proliferación Celular , Tamaño de la Célula , Viabilidad Fetal/genética , Fibronectinas/genética , Fibronectinas/fisiología , Adipocitos/metabolismo , Adipocitos/fisiología , Adipogénesis/genética , Adipogénesis/fisiología , Animales , Adhesión Celular/genética , Células Cultivadas , Retículo Endoplásmico/genética , Retículo Endoplásmico/fisiología , Fibronectinas/metabolismo , Marcación de Gen , Ratones , Ratones Noqueados , Fibras de Estrés/metabolismo , Fibras de Estrés/fisiología
14.
Biol Pharm Bull ; 33(3): 404-9, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20190400

RESUMEN

To elucidate molecular mechanisms of adipocyte differentiation, we previously isolated TC10-like/TC10betaLong (TCL/TC10betaL), regulators of G protein signaling 2 (RGS2), factor for adipocyte differentiation (fad) 104 and fad158, which were transiently expressed in the early phase of adipogenesis. These four genes seem to be positive regulators of adipogenesis, since their knockdown resulted in the inhibition of adipocyte differentiation. When growth-arrested 3T3-L1 cells were induced to differentiate, they first reentered the cell cycle and underwent several rounds of cell division, a process known as mitotic clonal expansion (MCE). Although MCE is required for completion of the differentiation program, its molecular mechanisms are not fully understood. We examined the roles of these four genes during MCE. Knockdown of the expression of TCL/TC10betaL impaired MCE, while that of RGS2 or fad104 had a rather weak effect and that of fad158 had no effect. The suppression of TCL/TC10betaL inhibited the incorporation of bromodeoxyuridine (BrdU), indicating that DNA synthesis was prevented by the knockdown. Interestingly, the knockdown of TCL/TC10betaL inhibited the expression of the CCAAT/enhancer-binding protein (C/EBP) family, C/EBPbeta and C/EBPdelta, during MCE. The results strongly suggest that TCL/TC10betaL regulates adipocyte differentiation by controlling MCE and this regulatory effect is closely linked to C/EBPbeta and C/EBPdelta expression.


Asunto(s)
Adipocitos/metabolismo , Adipogénesis/genética , Proteínas de Ciclo Celular/metabolismo , Diferenciación Celular/genética , GTP Fosfohidrolasas/genética , Regulación de la Expresión Génica , Mitosis/genética , Células 3T3-L1 , Animales , Bromodesoxiuridina/metabolismo , Proteína beta Potenciadora de Unión a CCAAT/metabolismo , Proteína delta de Unión al Potenciador CCAAT/metabolismo , Proteínas de Ciclo Celular/genética , ADN/biosíntesis , Fibronectinas/genética , Fibronectinas/metabolismo , GTP Fosfohidrolasas/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Proteínas RGS/genética , Proteínas RGS/metabolismo , Interferencia de ARN , Proteínas de Unión al GTP rho
15.
Biol Pharm Bull ; 33(5): 773-9, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20460753

RESUMEN

To elucidate molecular mechanisms of adipocyte differentiation, we previously isolated TC10-like/ TC10betaLong (TCL/TC10betaL), which was transiently expressed in the early phase of adipogenesis of 3T3-L1 cells and seemed to be a positive regulator of adipogenesis. By using TCL/TC10betaL-overexpressing NIH-3T3 cells, we also isolated gelsolin as a gene whose expression was up-regulated by TCL/TC10betaL. However, the roles of gelsolin in adipocyte differentiation are unclear. In this paper we characterized the function of gelsolin in adipogenesis in 3T3-L1 cells. The level of gelsolin changed during adipocyte differentiation. Knockdown of the expression of gelsolin using RNAi inhibited adipocyte differentiation, and impaired the expression of peroxisome proliferator-activated receptor gamma (PPARgamma) and CCAAT/enhancer-binding protein (C/EBP) alpha. Interestingly, the knockdown also impaired mitotic clonal expansion (MCE), and increased cell size, though it reduced levels of C/EBPbeta and C/EBPdelta, markers for the early stage of adipogenesis, only slightly. Gelsolin plays a crucial role in the differentiation of 3T3-L1 cells into adipocytes.


Asunto(s)
Adipocitos/metabolismo , Adipogénesis/fisiología , Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Diferenciación Celular/fisiología , Gelsolina/metabolismo , Regulación de la Expresión Génica , PPAR gamma/metabolismo , Células 3T3-L1 , Actinas/metabolismo , Adipogénesis/genética , Animales , Proteínas Potenciadoras de Unión a CCAAT/genética , Diferenciación Celular/genética , Gelsolina/genética , Expresión Génica , Ratones , Mitosis , PPAR gamma/genética , Interferencia de ARN
16.
Biol Pharm Bull ; 33(5): 784-91, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20460755

RESUMEN

Nuclear receptor liver receptor homolog-1 (LRH-1; NR5A2) plays a crucial role in the homeostasis of bile acids and cholesterol by controlling the expression of genes central to bile acid synthesis and efflux, reverse cholesterol transport, and high density lipoprotein-remodeling. However, the molecular mechanisms that modulate the transactivation activity of LRH-1 remain unclear. It is proposed that LRH-1's activity is regulated by post-modifications, the binding of small heterodimer partner (SHP), or the binding of coregulators. To search for cofactors that regulate the transactivation activity of LRH-1, we performed a pull-down assay using glutathione S-transferase (GST) fused to the N-terminal portion of LRH-1 and nuclear extracts from HeLa cells, and identified Ku proteins as interacting proteins with LRH-1. We also found that Ku proteins associate with LRH-1 through its DNA-binding domain and hinge region. Luciferase reporter assays revealed that Ku proteins repressed the SHP promoter activity mediated by LRH-1. Furthermore, Ku proteins suppressed the coactivating effect of peroxisome proliferator-activated receptor (PPAR) gamma coactivator-1alpha (PGC-1alpha), an LRH-1 coactivator, on the LRH-1-mediated SHP promoter activity. Previously, we showed that Ku proteins interacted with nuclear receptor farnesoid X receptor (FXR; NR1H4) and decreased the expression of its target gene. In this study, we demonstrated that Ku proteins also interacted with not only LRH-1 but various nuclear receptors, such as the estrogen receptor, PPAR, and Rev-erb. Ku proteins may function as corepressors for various nuclear receptors including LRH-1.


Asunto(s)
Proteínas Co-Represoras/metabolismo , ADN Helicasas/metabolismo , Regulación de la Expresión Génica , Expresión Génica , Regiones Promotoras Genéticas , Receptores Citoplasmáticos y Nucleares/metabolismo , Línea Celular , ADN , ADN Helicasas/genética , Dimerización , Glutatión Transferasa , Células HeLa , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Humanos , Autoantígeno Ku , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Activación Transcripcional
17.
Nihon Rinsho ; 68(2): 189-93, 2010 Feb.
Artículo en Japonés | MEDLINE | ID: mdl-20158083

RESUMEN

Peroxisome proliferator-activated receptor gamma (PPARgamma) agonist such as thiazolidinedione (TZD) has important roles in inflammation and cancer in addition to the control of energy conservation, adipocyte differentiation and insulin sensitivity. PPARgamma is a ligand-activated nuclear receptor. In the absence of ligand, the transcriptional activity of PPARgamma is suppressed through the association with N-CoR/SMRT and histone deacetylases. Upon binding of ligand to PPARgamma, PPARgamma binds several coactivators and regulates the expression of its target genes in various tissues. To understand various effects of TZD, we summarize the transcriptional control by PPARgamma focused on coactivators and target genes regulated by PPARgamma.


Asunto(s)
PPAR gamma/fisiología , Animales , Regulación de la Expresión Génica , Humanos , Transcripción Genética
18.
Biochem Biophys Res Commun ; 390(3): 738-42, 2009 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-19833092

RESUMEN

The farnesoid X receptor (FXR; NR1H4) is a member of the nuclear receptor superfamily and regulates the expression of genes involved in enterohepatic circulation and the metabolism of bile acids. Based on functional analyses, nuclear receptors are divided into regions A-F. To explore the cofactors interacting with FXR, we performed a pull-down assay using GST-fused to the N-terminal A/B region and the C region, which are required for the ligand-independent transactivation and DNA-binding, respectively, of FXR, and nuclear extracts from HeLa cells. We identified DNA-dependent protein kinase catalytic subunit (DNA-PKcs), Ku80, and Ku70 as FXR associated factors. These proteins are known to have an important role in DNA repair, recombination, and transcription. DNA-PKcs mainly interacted with the A/B region of FXR, whereas the Ku proteins interacted with the C region and with the D region (hinge region). Chromatin immunoprecipitation assays revealed that the Ku proteins associated with FXR on the bile salt export pump (BSEP) promoter. Furthermore, we demonstrated that ectopic expression of the Ku proteins decreased the promoter activity and expression of BSEP gene mediated by FXR. These results suggest that the Ku proteins function as corepressors for FXR.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/genética , Antígenos Nucleares/metabolismo , Proteína Quinasa Activada por ADN/metabolismo , Proteínas de Unión al ADN/metabolismo , Regulación de la Expresión Génica , Receptores Citoplasmáticos y Nucleares/metabolismo , Proteínas Represoras/metabolismo , Miembro 11 de la Subfamilia B de Transportador de Casetes de Unión al ATP , Antígenos Nucleares/genética , Inmunoprecipitación de Cromatina , Proteína Quinasa Activada por ADN/genética , Proteínas de Unión al ADN/genética , Humanos , Autoantígeno Ku , Regiones Promotoras Genéticas , Estructura Terciaria de Proteína , Receptores Citoplasmáticos y Nucleares/genética , Proteínas Represoras/genética
19.
Biol Pharm Bull ; 32(10): 1656-64, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19801824

RESUMEN

We have previously reported that a novel gene, factor for adipocyte differentiation (fad) 24, promotes adipogenesis in vitro. To examine the role of fad24 in adipogenesis in vivo and the development of obesity, transgenic mice overexpressing fad24 were generated using mouse fad24 cDNA under the control of a chicken beta-actin promoter and cytomegalovirus enhancer. The comparison of the ability of fibroblasts from fad24 transgenic embryos to differentiate into adipocytes with that of fibroblasts from wild-type embryos revealed that fad24 overexpression promotes adipogenesis in embryonic fibroblasts. The weight and histology of white adipose tissues, and serum adipocytokine levels were compared between fad24 transgenic mice and wild-type mice, and we found that fad24 overexpression increased the number of smaller adipocytes, caused hyperplasia rather than hypertrophy in white adipose tissue and increased the serum adiponectin level in mice fed both normal chow and a high-fat diet. Glucose and insulin tolerance tests indicated that the activity for glucose metabolism is improved in fad24 transgenic mice fed normal chow in comparison with that in wild-type mice. Our findings suggest that fad24 is a positive regulator of adipogenesis in vivo. Moreover, the increase in the number of smaller adipocytes caused by the overexpression of fad24 appears to enhance glucose metabolic activity, perhaps by increasing the serum adiponectin level.


Asunto(s)
Adipocitos/metabolismo , Adipogénesis , Tejido Adiposo/patología , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Glucemia/metabolismo , Proteínas Nucleares/metabolismo , Obesidad/etiología , Actinas/genética , Adipogénesis/genética , Adiponectina/sangre , Tejido Adiposo/metabolismo , Animales , Animales Modificados Genéticamente , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Proteínas de Ciclo Celular , Pollos , Citomegalovirus , ADN Complementario , Grasas de la Dieta , Fibroblastos/metabolismo , Expresión Génica , Hiperplasia/etiología , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas Nucleares/genética , Obesidad/metabolismo , Obesidad/patología , Regiones Promotoras Genéticas
20.
FEBS Lett ; 582(21-22): 3201-5, 2008 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-18708054

RESUMEN

The roles of the non-canonical Wnt pathway during adipogenesis are not well known, though Wnt10b is known to function as a negative regulator for adipogenesis by activating the canonical Wnt pathway. We focused on the roles of Wnt4, Wnt5a and Wnt6, which are thought to be part of the non-canonical Wnt pathway. The expression of these genes changed dramatically at the initial stage of adipogenesis. Furthermore, the inhibition of Wnt4 or Wnt5a expression prevented the accumulation of triacylglycerol and decreased the expression of adipogenesis-related genes. Wnt4 and Wnt5a have crucial roles in adipogenesis as positive regulators.


Asunto(s)
Adipocitos/citología , Adipogénesis/genética , Regulación de la Expresión Génica , Proteínas Wnt/fisiología , Células 3T3-L1 , Adipocitos/metabolismo , Animales , Ratones , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/fisiología , Interferencia de ARN , ARN Mensajero/biosíntesis , Triglicéridos/metabolismo , Proteínas Wnt/genética , Proteína Wnt-5a , Proteína Wnt4
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA