Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Front Cell Infect Microbiol ; 11: 633394, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34094995

RESUMEN

Early recognition and elimination of invading pathogens by the innate immune system, is one of the most efficient host defense mechanisms preventing the induction of systemic complications from infection. To this end the host can mobilize endogenous antimicrobials capable of killing the intruder by perforating the microbial cell wall. Here, we show that Streptococcus pyogenes can shield its outer surface with a layer of plasma proteins. This mechanism protects the bacteria from an otherwise lytic attack by LL-37 and extracellular histones, allowing the bacteria to adjust their gene regulation to an otherwise hostile environment.


Asunto(s)
Infecciones Estreptocócicas , Streptococcus pyogenes , Proteínas Sanguíneas , Histonas , Humanos , Inmunidad Innata
2.
Front Cell Infect Microbiol ; 11: 752280, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34504810

RESUMEN

[This corrects the article DOI: 10.3389/fcimb.2021.633394.].

3.
J Vis Exp ; (152)2019 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-31736484

RESUMEN

Interaction of Streptococcus pneumoniae with the surface of endothelial cells is mediated in blood flow via mechanosensitive proteins such as the Von Willebrand Factor (VWF). This glycoprotein changes its molecular conformation in response to shear stress, thereby exposing binding sites for a broad spectrum of host-ligand interactions. In general, culturing of primary endothelial cells under a defined shear flow is known to promote the specific cellular differentiation and the formation of a stable and tightly linked endothelial layer resembling the physiology of the inner lining of a blood vessel. Thus, the functional analysis of interactions between bacterial pathogens and the host vasculature involving mechanosensitive proteins requires the establishment of pump systems that can simulate the physiological flow forces known to affect the surface of vascular cells. The microfluidic device used in this study enables a continuous and pulseless recirculation of fluids with a defined flow rate. The computer-controlled air-pressure pump system applies a defined shear stress on endothelial cell surfaces by generating a continuous, unidirectional, and controlled medium flow. Morphological changes of the cells and bacterial attachment can be microscopically monitored and quantified in the flow by using special channel slides that are designed for microscopic visualization. In contrast to static cell culture infection, which in general requires a sample fixation prior to immune labeling and microscopic analyses, the microfluidic slides enable both the fluorescence-based detection of proteins, bacteria, and cellular components after sample fixation; serial immunofluorescence staining; and direct fluorescence-based detection in real time. In combination with fluorescent bacteria and specific fluorescence-labeled antibodies, this infection procedure provides an efficient multiple component visualization system for a huge spectrum of scientific applications related to vascular processes.


Asunto(s)
Células Endoteliales de la Vena Umbilical Humana/microbiología , Infecciones Neumocócicas/microbiología , Reología , Histamina/farmacología , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Humanos , Microfluídica , Streptococcus pneumoniae/efectos de los fármacos , Streptococcus pneumoniae/metabolismo , Factor de von Willebrand/metabolismo
4.
Front Microbiol ; 10: 511, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30972039

RESUMEN

Streptococcus pneumoniae is a major cause of community acquired pneumonia and septicaemia in humans. These diseases are frequently associated with thromboembolic cardiovascular complications. Pneumococci induce the exocytosis of endothelial Weibel-Palade Bodies and thereby actively stimulate the release of von Willebrand factor (VWF), which is an essential glycoprotein of the vascular hemostasis. Both, the pneumococcus induced pulmonary inflammation and the thromboembolytic complications are characterized by a dysbalanced hemostasis including a marked increase in VWF plasma concentrations. Here, we describe for the first time VWF as a novel interaction partner of capsulated and non-encapsulated pneumococci. Moreover, cell culture infection analyses with primary endothelial cells characterized VWF as bridging molecule that mediates bacterial adherence to endothelial cells in a heparin-sensitive manner. Due to the mechanoresponsive changes of the VWF protein conformation and multimerization status, which occur in the blood stream, we used a microfluidic pump system to generate shear flow-induced multimeric VWF strings on endothelial cell surfaces and analyzed attachment of RFP-expressing pneumococci in flow. By applying immunofluorescence visualization and additional electron microscopy, we detected a frequent and enduring bacterial attachment to the VWF strings. Bacterial attachment to the endothelium was confirmed in vivo using a zebrafish infection model, which is described in many reports and acknowledged as suitable model to study hemostasis mechanisms and protein interactions of coagulation factors. Notably, we visualized the recruitment of zebrafish-derived VWF to the surface of pneumococci circulating in the blood stream and detected a VWF-dependent formation of bacterial aggregates within the vasculature of infected zebrafish larvae. Furthermore, we identified the surface-exposed bacterial enolase as pneumococcal VWF binding protein, which interacts with the VWF domain A1 and determined the binding kinetics by surface plasmon resonance. Subsequent epitope mapping using an enolase peptide array indicates that the peptide 181YGAEIFHALKKILKS195 might serve as a possible core sequence of the VWF interaction site. In conclusion, we describe a VWF-mediated mechanism for pneumococcal anchoring within the bloodstream via surface-displayed enolase, which promotes intravascular bacterial aggregation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA