Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 124
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 174(6): 1571-1585.e11, 2018 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-30193114

RESUMEN

Metabolic diseases are often characterized by circadian misalignment in different tissues, yet how altered coordination and communication among tissue clocks relate to specific pathogenic mechanisms remains largely unknown. Applying an integrated systems biology approach, we performed 24-hr metabolomics profiling of eight mouse tissues simultaneously. We present a temporal and spatial atlas of circadian metabolism in the context of systemic energy balance and under chronic nutrient stress (high-fat diet [HFD]). Comparative analysis reveals how the repertoires of tissue metabolism are linked and gated to specific temporal windows and how this highly specialized communication and coherence among tissue clocks is rewired by nutrient challenge. Overall, we illustrate how dynamic metabolic relationships can be reconstructed across time and space and how integration of circadian metabolomics data from multiple tissues can improve our understanding of health and disease.


Asunto(s)
Relojes Circadianos/fisiología , Metaboloma , Animales , Dieta Alta en Grasa , Metabolismo Energético , Hígado/metabolismo , Masculino , Redes y Vías Metabólicas , Metabolómica , Ratones , Ratones Endogámicos C57BL , Músculo Esquelético/metabolismo , Corteza Prefrontal/metabolismo , Núcleo Supraquiasmático/metabolismo , Proteína Desacopladora 1/metabolismo
2.
Cell ; 172(3): 409-422.e21, 2018 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-29290465

RESUMEN

Selenoproteins are rare proteins among all kingdoms of life containing the 21st amino acid, selenocysteine. Selenocysteine resembles cysteine, differing only by the substitution of selenium for sulfur. Yet the actual advantage of selenolate- versus thiolate-based catalysis has remained enigmatic, as most of the known selenoproteins also exist as cysteine-containing homologs. Here, we demonstrate that selenolate-based catalysis of the essential mammalian selenoprotein GPX4 is unexpectedly dispensable for normal embryogenesis. Yet the survival of a specific type of interneurons emerges to exclusively depend on selenocysteine-containing GPX4, thereby preventing fatal epileptic seizures. Mechanistically, selenocysteine utilization by GPX4 confers exquisite resistance to irreversible overoxidation as cells expressing a cysteine variant are highly sensitive toward peroxide-induced ferroptosis. Remarkably, concomitant deletion of all selenoproteins in Gpx4cys/cys cells revealed that selenoproteins are dispensable for cell viability provided partial GPX4 activity is retained. Conclusively, 200 years after its discovery, a specific and indispensable role for selenium is provided.


Asunto(s)
Apoptosis , Glutatión Peroxidasa/metabolismo , Convulsiones/metabolismo , Selenio/metabolismo , Animales , Supervivencia Celular , Células Cultivadas , Femenino , Glutatión Peroxidasa/genética , Células HEK293 , Humanos , Peróxido de Hidrógeno/toxicidad , Interneuronas/metabolismo , Peroxidación de Lípido , Masculino , Ratones , Ratones Endogámicos C57BL , Fosfolípido Hidroperóxido Glutatión Peroxidasa , Convulsiones/etiología
3.
Cell ; 166(4): 867-880, 2016 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-27518562

RESUMEN

We report that astrocytic insulin signaling co-regulates hypothalamic glucose sensing and systemic glucose metabolism. Postnatal ablation of insulin receptors (IRs) in glial fibrillary acidic protein (GFAP)-expressing cells affects hypothalamic astrocyte morphology, mitochondrial function, and circuit connectivity. Accordingly, astrocytic IR ablation reduces glucose-induced activation of hypothalamic pro-opio-melanocortin (POMC) neurons and impairs physiological responses to changes in glucose availability. Hypothalamus-specific knockout of astrocytic IRs, as well as postnatal ablation by targeting glutamate aspartate transporter (GLAST)-expressing cells, replicates such alterations. A normal response to altering directly CNS glucose levels in mice lacking astrocytic IRs indicates a role in glucose transport across the blood-brain barrier (BBB). This was confirmed in vivo in GFAP-IR KO mice by using positron emission tomography and glucose monitoring in cerebral spinal fluid. We conclude that insulin signaling in hypothalamic astrocytes co-controls CNS glucose sensing and systemic glucose metabolism via regulation of glucose uptake across the BBB.


Asunto(s)
Astrocitos/metabolismo , Glucosa/metabolismo , Hipotálamo/metabolismo , Insulina/metabolismo , Transducción de Señal , Sistema de Transporte de Aminoácidos X-AG/genética , Sistema de Transporte de Aminoácidos X-AG/metabolismo , Animales , Barrera Hematoencefálica , Retículo Endoplásmico/metabolismo , Proteína Ácida Fibrilar de la Glía/genética , Proteína Ácida Fibrilar de la Glía/metabolismo , Homeostasis , Ratones , Mitocondrias/metabolismo , Neuronas/citología , Neuronas/metabolismo , Proopiomelanocortina/metabolismo , Receptor de Insulina/genética , Receptor de Insulina/metabolismo
4.
Cell ; 167(3): 843-857.e14, 2016 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-27720451

RESUMEN

Glucagon and thyroid hormone (T3) exhibit therapeutic potential for metabolic disease but also exhibit undesired effects. We achieved synergistic effects of these two hormones and mitigation of their adverse effects by engineering chemical conjugates enabling delivery of both activities within one precisely targeted molecule. Coordinated glucagon and T3 actions synergize to correct hyperlipidemia, steatohepatitis, atherosclerosis, glucose intolerance, and obesity in metabolically compromised mice. We demonstrate that each hormonal constituent mutually enriches cellular processes in hepatocytes and adipocytes via enhanced hepatic cholesterol metabolism and white fat browning. Synchronized signaling driven by glucagon and T3 reciprocally minimizes the inherent harmful effects of each hormone. Liver-directed T3 action offsets the diabetogenic liability of glucagon, and glucagon-mediated delivery spares the cardiovascular system from adverse T3 action. Our findings support the therapeutic utility of integrating these hormones into a single molecular entity that offers unique potential for treatment of obesity, type 2 diabetes, and cardiovascular disease.


Asunto(s)
Glucagón/uso terapéutico , Enfermedades Metabólicas/tratamiento farmacológico , Triyodotironina/efectos de los fármacos , Animales , Aterosclerosis/tratamiento farmacológico , Peso Corporal/efectos de los fármacos , Huesos/efectos de los fármacos , Ingeniería Química/métodos , Colesterol/metabolismo , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Modelos Animales de Enfermedad , Combinación de Medicamentos , Sistemas de Liberación de Medicamentos , Sinergismo Farmacológico , Glucagón/efectos adversos , Glucagón/química , Glucagón/farmacología , Hiperglucemia/tratamiento farmacológico , Hígado/efectos de los fármacos , Hígado/metabolismo , Ratones , Terapia Molecular Dirigida , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Obesidad/tratamiento farmacológico , Triyodotironina/efectos adversos , Triyodotironina/química , Triyodotironina/farmacología
5.
Mol Biol Evol ; 41(4)2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38606905

RESUMEN

The molecular evolution of the mammalian heater protein UCP1 is a powerful biomarker to understand thermoregulatory strategies during species radiation into extreme climates, such as aquatic life with high thermal conductivity. While fully aquatic mammals lost UCP1, most semiaquatic seals display intact UCP1 genes, apart from large elephant seals. Here, we show that UCP1 thermogenic activity of the small-bodied harbor seal is equally potent compared to terrestrial orthologs, emphasizing its importance for neonatal survival on land. In contrast, elephant seal UCP1 does not display thermogenic activity, not even when translating a repaired or a recently highlighted truncated version. Thus, the thermogenic benefits for neonatal survival during terrestrial birth in semiaquatic pinnipeds maintained evolutionary selection pressure on UCP1 function and were only outweighed by extreme body sizes among elephant seals, fully eliminating UCP1-dependent thermogenesis.


Asunto(s)
Tamaño Corporal , Phocidae , Termogénesis , Proteína Desacopladora 1 , Animales , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo , Termogénesis/genética , Phocidae/genética , Evolución Molecular , Phoca/genética
6.
Exp Cell Res ; 425(1): 113536, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36858342

RESUMEN

The neurotoxin MPP+ triggers cell death of dopamine neurons and induces Parkinson's disease symptoms in mice and men, but the immediate transcriptional response to this neurotoxin has not been studied. We therefore treated human SH-SY5Y cells with a low dose (0.1 mM) of MPP+ and measured the effect on nascent transcription by precision run-on sequencing (PRO-seq). We found that transcription of the mitochondrial genome was significantly reduced already after 30 min, whereas nuclear gene transcription was unaffected. Inhibition of respiratory complex I by MPP+ led to reduced ATP production, that may explain the diminished activity of mitochondrial RNA polymerase. Our results show that MPP+ has a direct effect on mitochondrial function and transcription, and that other gene expression or epigenetic changes induced by this neurotoxin are secondary effects that reflect a cellular adaptation program.


Asunto(s)
Neuroblastoma , Neurotoxinas , Humanos , Neurotoxinas/toxicidad , Neurotoxinas/metabolismo , 1-Metil-4-fenilpiridinio/toxicidad , Neuronas/metabolismo , Neuroblastoma/metabolismo , Transcripción Genética , Línea Celular Tumoral , Apoptosis
8.
Int J Mol Sci ; 24(18)2023 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-37762083

RESUMEN

Mitochondria are involved in the regulation of cellular energy metabolism, calcium homeostasis, and apoptosis. For mitochondrial quality control, dynamic processes, such as mitochondrial fission and fusion, are necessary to maintain shape and function. Disturbances of mitochondrial dynamics lead to dysfunctional mitochondria, which contribute to the development and progression of numerous diseases, including Type 2 Diabetes (T2D). Compelling evidence has been put forward that mitochondrial dynamics play a significant role in the metabolism-secretion coupling of pancreatic ß cells. The disruption of mitochondrial dynamics is linked to defects in energy production and increased apoptosis, ultimately impairing insulin secretion and ß cell death. This review provides an overview of molecular mechanisms controlling mitochondrial dynamics, their dysfunction in pancreatic ß cells, and pharmaceutical agents targeting mitochondrial dynamic proteins, such as mitochondrial division inhibitor-1 (mdivi-1), dynasore, P110, and 15-oxospiramilactone (S3).


Asunto(s)
Diabetes Mellitus Tipo 2 , Humanos , Secreción de Insulina , Dinámicas Mitocondriales , Apoptosis , Proteínas Mitocondriales
9.
Gastroenterology ; 161(1): 318-332.e9, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33819482

RESUMEN

BACKGROUND & AIMS: The existence of different subtypes of pancreatic ductal adenocarcinoma (PDAC) and their correlation with patient outcome have shifted the emphasis on patient classification for better decision-making algorithms and personalized therapy. The contribution of mechanisms regulating the cancer stem cell (CSC) population in different subtypes remains unknown. METHODS: Using RNA-seq, we identified B-cell CLL/lymphoma 3 (BCL3), an atypical nf-κb signaling member, as differing in pancreatic CSCs. To determine the biological consequences of BCL3 silencing in vivo and in vitro, we generated bcl3-deficient preclinical mouse models as well as murine cell lines and correlated our findings with human cell lines, PDX models, and 2 independent patient cohorts. We assessed the correlation of bcl3 expression pattern with clinical parameters and subtypes. RESULTS: Bcl3 was significantly down-regulated in human CSCs. Recapitulating this phenotype in preclinical mouse models of PDAC via BCL3 genetic knockout enhanced tumor burden, metastasis, epithelial to mesenchymal transition, and reduced overall survival. Fluorescence-activated cell sorting analyses, together with oxygen consumption, sphere formation, and tumorigenicity assays, all indicated that BCL3 loss resulted in CSC compartment expansion promoting cellular dedifferentiation. Overexpression of BCL3 in human PDXs diminished tumor growth by significantly reducing the CSC population and promoting differentiation. Human PDACs with low BCL3 expression correlated with increased metastasis, and BCL3-negative tumors correlated with lower survival and nonclassical subtypes. CONCLUSIONS: We demonstrate that bcl3 impacts pancreatic carcinogenesis by restraining CSC expansion and by curtailing an aggressive and metastatic tumor burden in PDAC across species. Levels of BCL3 expression are a useful stratification marker for predicting subtype characterization in PDAC, thereby allowing for personalized therapeutic approaches.


Asunto(s)
Proteínas del Linfoma 3 de Células B/metabolismo , Carcinoma Ductal Pancreático/metabolismo , Células Madre Neoplásicas/metabolismo , Neoplasias Pancreáticas/metabolismo , Animales , Proteínas del Linfoma 3 de Células B/genética , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/secundario , Diferenciación Celular , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Metabolismo Energético , Regulación Neoplásica de la Expresión Génica , Humanos , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Desnudos , Invasividad Neoplásica , Células Madre Neoplásicas/patología , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Transducción de Señal , Carga Tumoral , Células Tumorales Cultivadas
10.
J Exp Biol ; 225(13)2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35694963

RESUMEN

Small mammals undergo thermoregulatory adjustments in response to changing environmental conditions. Whereas small heterothermic mammals can employ torpor to save energy in the cold, homeothermic species must increase heat production to defend normothermia through the recruitment of brown adipose tissue (BAT). Here, we studied thermoregulatory adaptation in an obligate homeotherm, the African striped mouse (Rhabdomys pumilio), captured from a subpopulation living in a mesic, temperate climate with marked seasonal differences. Basal metabolic rate (BMR), non-shivering thermogenesis (NST) and summit metabolic rate (Msum) increased from summer to winter, with NST and Msum already reaching maximal rates in autumn, suggesting seasonal preparation for the cold. Typical of rodents, cold-induced metabolic rates were positively correlated with BAT mass. Analysis of cytochrome c oxidase (COX) activity and UCP1 content, however, demonstrated that thermogenic capacity declined with BAT mass. This resulted in seasonal differences in NST being driven by changes in BMR. The increase in BMR was supported by a comprehensive anatomical analysis of metabolically active organs, revealing increased mass proportions in the cold season. The thermoregulatory response of R. pumilio was associated with the maintenance of body mass throughout the year (48.3±1.4 g), contrasting large summer-winter mass reductions often observed in Holarctic rodents. Collectively, bioenergetic adaptation of this Afrotropical rodent involves seasonal organ adjustments influencing BMR, combined with a constant thermogenic capacity dictated by trade-offs in the thermogenic properties of BAT. Arguably, this high degree of plasticity was a response to unpredictable cold spells throughout the year. Consequently, the reliance on such a resource-intensive thermoregulatory strategy may expose more energetic vulnerability in changing environments of food scarcity and extreme weather conditions due to climate change, with major ramifications for survival of the species.


Asunto(s)
Tejido Adiposo Pardo , Metabolismo Basal , Aclimatación/fisiología , Tejido Adiposo Pardo/fisiología , Animales , Metabolismo Basal/fisiología , Peso Corporal , Frío , Ecosistema , Mamíferos , Ratones , Murinae , Estaciones del Año , Termogénesis/fisiología
11.
Nature ; 535(7612): 430-4, 2016 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-27398620

RESUMEN

Insulin-dependent diabetes is a complex multifactorial disorder characterized by loss or dysfunction of ß-cells. Pancreatic ß-cells differ in size, glucose responsiveness, insulin secretion and precursor cell potential; understanding the mechanisms that underlie this functional heterogeneity might make it possible to develop new regenerative approaches. Here we show that Fltp (also known as Flattop and Cfap126), a Wnt/planar cell polarity (PCP) effector and reporter gene acts as a marker gene that subdivides endocrine cells into two subpopulations and distinguishes proliferation-competent from mature ß-cells with distinct molecular, physiological and ultrastructural features. Genetic lineage tracing revealed that endocrine subpopulations from Fltp-negative and -positive lineages react differently to physiological and pathological changes. The expression of Fltp increases when endocrine cells cluster together to form polarized and mature 3D islet mini-organs. We show that 3D architecture and Wnt/PCP ligands are sufficient to trigger ß-cell maturation. By contrast, the Wnt/PCP effector Fltp is not necessary for ß-cell development, proliferation or maturation. We conclude that 3D architecture and Wnt/PCP signalling underlie functional ß-cell heterogeneity and induce ß-cell maturation. The identification of Fltp as a marker for endocrine subpopulations sheds light on the molecular underpinnings of islet cell heterogeneity and plasticity and might enable targeting of endocrine subpopulations for the regeneration of functional ß-cell mass in diabetic patients.


Asunto(s)
Islotes Pancreáticos/citología , Animales , Biomarcadores/análisis , Diferenciación Celular , Linaje de la Célula/genética , Polaridad Celular , Proliferación Celular , Humanos , Resistencia a la Insulina , Islotes Pancreáticos/metabolismo , Ligandos , Ratones , Ratones Endogámicos C57BL , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Vía de Señalización Wnt
12.
Int J Mol Sci ; 23(20)2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-36293194

RESUMEN

Mitochondrial dynamics and bioenergetics are central to glucose-stimulated insulin secretion by pancreatic beta cells. Previously, we demonstrated that a disturbance in glucose-invoked fission impairs insulin secretion by compromising glucose catabolism. Here, we investigated whether the overexpression of mitochondrial fission regulator Drp1 in MIN6 cells can improve or rescue insulin secretion. Although Drp1 overexpression slightly improves the triggering mechanism of insulin secretion of the Drp1-knockdown cells and has no adverse effects on mitochondrial metabolism in wildtype MIN6 cells, the constitutive presence of Drp1 unexpectedly impairs insulin content, which leads to a reduction in the absolute values of secreted insulin. Coherent with previous studies in Drp1-overexpressing muscle cells, we found that the upregulation of ER stress-related genes (BiP, Chop, and Hsp60) possibly impacts insulin production in MIN6 cells. Collectively, we confirm the important role of Drp1 for the energy-coupling of insulin secretion but unravel off-targets effects by Drp1 overexpression on insulin content that warrant caution when manipulating Drp1 in disease therapy.


Asunto(s)
Células Secretoras de Insulina , Insulina , Insulina/metabolismo , Secreción de Insulina , Células Secretoras de Insulina/metabolismo , Dinámicas Mitocondriales/genética , Glucosa/metabolismo , Insulina Regular Humana
13.
Eur J Neurosci ; 53(2): 390-401, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33007132

RESUMEN

Major depressive disorder (MDD) is one of the most severe global health problems with millions of people affected, however, the mechanisms underlying this disorder is still poorly understood. Genome-wide association studies have highlighted a link between the neutral amino acid transporter SLC6A15 and MDD. Additionally, a number of preclinical studies support the function of this transporter in modulating levels of brain neurotransmitters, stress system regulation and behavioural phenotypes related to MDD. However, the molecular and functional mechanisms involved in this interaction are still unresolved. Therefore, to investigate the effects of the SLC6A15 transporter, we used hippocampal tissue from Slc6a15-KO and wild-type mice, together with several in-vitro assays in primary hippocampal neurons. Utilizing a proteomics approach we identified differentially regulated proteins that formed a regulatory network and pathway analysis indicated significantly affected cellular domains, including metabolic, mitochondrial and structural functions. Furthermore, we observed reduced release probability at glutamatergic synapses, increased mitochondrial function, higher GSH/GSSG redox ratio and an improved neurite outgrowth in primary neurons lacking SLC6A15. In summary, we hypothesize that by controlling the intracellular concentrations of neutral amino acids, SLC6A15 affects mitochondrial activity, which could lead to alterations in neuronal structure and activity. These data provide further indication that a pharmacological or genetic reduction of SLC6A15 activity may indeed be a promising approach for antidepressant therapy.


Asunto(s)
Sistemas de Transporte de Aminoácidos Neutros , Trastorno Depresivo Mayor , Sistemas de Transporte de Aminoácidos Neutros/genética , Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Animales , Estudio de Asociación del Genoma Completo , Hipocampo/metabolismo , Ratones , Neuronas/metabolismo , Factores de Riesgo
14.
PLoS Biol ; 16(1): e2003992, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29370167

RESUMEN

In endothermic species, heat released as a product of metabolism ensures stable internal temperature throughout the organism, despite varying environmental conditions. Mitochondria are major actors in this thermogenic process. Part of the energy released by the oxidation of respiratory substrates drives ATP synthesis and metabolite transport, but a substantial proportion is released as heat. Using a temperature-sensitive fluorescent probe targeted to mitochondria, we measured mitochondrial temperature in situ under different physiological conditions. At a constant external temperature of 38 °C, mitochondria were more than 10 °C warmer when the respiratory chain (RC) was fully functional, both in human embryonic kidney (HEK) 293 cells and primary skin fibroblasts. This differential was abolished in cells depleted of mitochondrial DNA or treated with respiratory inhibitors but preserved or enhanced by expressing thermogenic enzymes, such as the alternative oxidase or the uncoupling protein 1. The activity of various RC enzymes was maximal at or slightly above 50 °C. In view of their potential consequences, these observations need to be further validated and explored by independent methods. Our study prompts a critical re-examination of the literature on mitochondria.


Asunto(s)
Mitocondrias/fisiología , Termogénesis/fisiología , Fibroblastos/fisiología , Colorantes Fluorescentes , Células HEK293 , Calor , Humanos , Membranas Mitocondriales/fisiología , Proteínas Mitocondriales/metabolismo , Oxidorreductasas/metabolismo , Proteínas de Plantas/metabolismo , Cultivo Primario de Células , Piel , Temperatura , Proteína Desacopladora 1/metabolismo
15.
Gastroenterology ; 156(1): 203-217.e20, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30296435

RESUMEN

BACKGROUND AND AIMS: Cells in pancreatic ductal adenocarcinoma (PDAC) undergo autophagy, but its effects vary with tumor stage and genetic factors. We investigated the consequences of varying levels of the autophagy related 5 (Atg5) protein on pancreatic tumor formation and progression. METHODS: We generated mice that express oncogenic Kras in primary pancreatic cancer cells and have homozygous disruption of Atg5 (A5;Kras) or heterozygous disruption of Atg5 (A5+/-;Kras), and compared them with mice with only oncogenic Kras (controls). Pancreata were analyzed by histology and immunohistochemistry. Primary tumor cells were isolated and used to perform transcriptome, metabolome, intracellular calcium, extracellular cathepsin activity, and cell migration and invasion analyses. The cells were injected into wild-type littermates, and orthotopic tumor growth and metastasis were monitored. Atg5 was knocked down in pancreatic cancer cell lines using small hairpin RNAs; cell migration and invasion were measured, and cells were injected into wild-type littermates. PDAC samples were obtained from independent cohorts of patients and protein levels were measured on immunoblot and immunohistochemistry; we tested the correlation of protein levels with metastasis and patient survival times. RESULTS: A5+/-;Kras mice, with reduced Atg5 levels, developed more tumors and metastases, than control mice, whereas A5;Kras mice did not develop any tumors. Cultured A5+/-;Kras primary tumor cells were resistant to induction and inhibition of autophagy, had altered mitochondrial morphology, compromised mitochondrial function, changes in intracellular Ca2+ oscillations, and increased activity of extracellular cathepsin L and D. The tumors that formed in A5+/-;Kras mice contained greater numbers of type 2 macrophages than control mice, and primary A5+/-;Kras tumor cells had up-regulated expression of cytokines that regulate macrophage chemoattraction and differentiation into M2 macrophage. Knockdown of Atg5 in pancreatic cancer cell lines increased their migratory and invasive capabilities, and formation of metastases following injection into mice. In human PDAC samples, lower levels of ATG5 associated with tumor metastasis and shorter survival time. CONCLUSIONS: In mice that express oncogenic Kras in pancreatic cells, heterozygous disruption of Atg5 and reduced protein levels promotes tumor development, whereas homozygous disruption of Atg5 blocks tumorigenesis. Therapeutic strategies to alter autophagy in PDAC should consider the effects of ATG5 levels to avoid the expansion of resistant and highly aggressive cells.


Asunto(s)
Proteína 5 Relacionada con la Autofagia/metabolismo , Autofagia , Carcinoma Ductal Pancreático/metabolismo , Movimiento Celular , Neoplasias Pancreáticas/metabolismo , Animales , Proteína 5 Relacionada con la Autofagia/deficiencia , Proteína 5 Relacionada con la Autofagia/genética , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/prevención & control , Carcinoma Ductal Pancreático/secundario , Catepsinas/genética , Catepsinas/metabolismo , Proliferación Celular , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Transformación Celular Neoplásica/patología , Progresión de la Enfermedad , Regulación Neoplásica de la Expresión Génica , Genes ras , Heterocigoto , Homocigoto , Ratones Noqueados , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/prevención & control , Transducción de Señal , Carga Tumoral , Células Tumorales Cultivadas
16.
J Exp Biol ; 223(Pt 15)2020 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-32620708

RESUMEN

Uncoupling protein 1 (UCP1) governs non-shivering thermogenesis in brown adipose tissue. It has been estimated that pigs lost UCP1 ∼20 million years ago (MYA), dictating cold intolerance among piglets. Our current understanding of the root causes of UCP1 loss are, however, incomplete. Thus, examination of additional species can shed light on these fundamental evolutionary questions. Here, we investigated UCP1 in the Chacoan peccary (Catagonus wagneri), a member of the Tayassuid lineage that diverged from pigs during the late Eocene-mid Oligocene. Exons 1 and 2 have been deleted in peccary UCP1 and the remaining exons display additional inactivating mutations. A common nonsense mutation in exon 6 revealed that UCP1 was pseudogenized in a shared ancestor of pigs and peccaries. Our selection pressure analyses indicate that the inactivation occurred 36.2-44.3 MYA during the mid-late Eocene, which is much earlier than previously thought. Importantly, pseudogenized UCP1 provides the molecular rationale for cold sensitivity and current tropical biogeography of extant peccaries.


Asunto(s)
Artiodáctilos , Termogénesis , Tejido Adiposo Pardo , Animales , Evolución Biológica , Proteínas Mitocondriales/genética , Porcinos , Termogénesis/genética , Proteína Desacopladora 1/genética
18.
Handb Exp Pharmacol ; 251: 127-141, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-29748882

RESUMEN

Brown adipose tissue (BAT), the specialized heat-producing organ found in many placental mammals including humans, may be accessible for clinical drug intervention to help combat metabolic diseases. Understanding the biology of BAT and its thermogenic uncoupling protein 1 (UCP1) will benefit from an assessment of its evolution, answering where UCP1 originated and how it has been modified and integrated into cellular energy metabolism. Here, we review topical insights regarding the molecular evolution of UCP1-also reconstructing the proximate and ultimate factors selecting for brown fat thermogenesis in placental mammals. This new thinking on "old" events will assist our understanding of how thermogenic mitochondrial uncoupling was integrated into the physiology of the brown adipocyte. Recent comparative studies examining the occurrence of UCP1 in vertebrates not only identified the ancient (pre-mammal) rise of UCP1 but also its repeated downfall during mammalian evolution as evidenced by multiple independent gene loss and/or inactivation events. Together with the comparative physiology of various species, we may be able to find conditions that favor UCP1 thermogenesis and, learning from these insights, identify molecular networks that will be useful to pharmacologically stimulate the tissue.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Canales Iónicos , Proteínas Mitocondriales , Proteína Desacopladora 1/metabolismo , Animales , Femenino , Humanos , Embarazo , Termogénesis , Proteína Desacopladora 1/genética
19.
J Exp Biol ; 221(Pt Suppl 1)2018 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-29514888

RESUMEN

Brown adipose tissue (BAT) enables adaptive thermoregulation through heat production that is catalyzed by mitochondrial uncoupling protein 1 (UCP1). BAT is frequently studied in rodent model organisms, and recently in adult humans to treat metabolic diseases. However, complementary studies of many non-model species, which have diversified to many more ecological niches, may significantly broaden our understanding of BAT regulation and its physiological roles. This Review highlights the research on non-model organisms, which was instrumental to the discovery of BAT function, and the unique evolutionary history of BAT/UCP1 in mammalian thermogenesis. The comparative biology of BAT provides a powerful integrative approach that could identify conserved and specialized functional changes in BAT and UCP1 by considering species diversity, ecology and evolution, and by fusing multiple scientific disciplines such as physiology and biochemistry. Thus, resolving the complete picture of BAT biology may fail if comparative studies of non-model organisms are neglected.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Evolución Biológica , Mamíferos/fisiología , Termogénesis/fisiología , Proteína Desacopladora 1/genética , Animales , Proteína Desacopladora 1/metabolismo
20.
Pharmacol Res ; 137: 11-24, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30223086

RESUMEN

Myocardial remodeling and dysfunction caused by accelerated oxidative damage is a widely reported phenomenon within a diabetic state. Altered myocardial substrate preference appears to be the major cause of enhanced oxidative stress-mediated cell injury within a diabetic heart. During this process, exacerbated free fatty acid flux causes an abnormal increase in mitochondrial membrane potential leading to the overproduction of free radical species and subsequent cell damage. Uncoupling proteins (UCPs) are expressed within the myocardium and can protect against free radical damage by modulating mitochondrial respiration, leading to reduced production of reactive oxygen species. Moreover, transgenic animals lacking UCPs have been shown to be more susceptible to oxidative damage and display reduced cardiac function when compared to wild type animals. This suggests that tight regulation of UCPs is necessary for normal cardiac function and in the prevention of diabetes-induced oxidative damage. This review aims to enhance our understanding of the pathophysiological mechanisms relating to the role of UCPs in a diabetic heart, and further discuss known pharmacological compounds and hormones that can protect a diabetic heart through the modulation of UCPs.


Asunto(s)
Cardiotónicos/uso terapéutico , Diabetes Mellitus , Corazón/fisiología , Proteínas Desacopladoras Mitocondriales/fisiología , Animales , Cardiotónicos/farmacología , Diabetes Mellitus/tratamiento farmacológico , Diabetes Mellitus/metabolismo , Diabetes Mellitus/fisiopatología , Humanos , Mitocondrias Cardíacas/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA