Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Anal Chem ; 96(3): 957-965, 2024 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-38164878

RESUMEN

Infrared (IR) spectroscopy of serum/plasma represents an alluring molecular diagnostic tool, especially for cancer, as it can provide a molecular fingerprint of clinical samples based on vibrational modes of chemical bonds. However, despite the superior performance, the routine adoption of this technique for clinical settings has remained elusive. This is due to the potential confounding factors that are often overlooked and pose a significant barrier to clinical translation. In this Perspective, we summarize the concerns associated with various confounding factors, such as fluid sampling, optical effects, hemolysis, abnormal cardiovascular and/or hepatic functions, infections, alcoholism, diet style, age, and gender of a patient or normal control cohort, and improper selection of numerical methods that ultimately would lead to improper spectral diagnosis. We also propose some precautionary measures to overcome the challenges associated with these confounding factors.


Asunto(s)
Neoplasias , Triaje , Humanos , Espectrofotometría Infrarroja/métodos , Neoplasias/diagnóstico , Vibración , Espectroscopía Infrarroja por Transformada de Fourier/métodos
2.
J Mater Sci Mater Med ; 32(9): 108, 2021 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-34432156

RESUMEN

Surface modification of superparamagnetic Fe3O4 nanoparticles using polymers (polyaniline/polypyrrole) was done by radio frequency (r.f.) plasma polymerization technique and characterized by XRD, TEM, TG/DTA and VSM. Surface-passivated Fe3O4 nanoparticles with polymers were having spherical/rod-shaped structures with superparamagnetic properties. Broad visible photoluminescence emission bands were observed at 445 and 580 nm for polyaniline-coated Fe3O4 and at 488 nm for polypyrrole-coated Fe3O4. These samples exhibit good fluorescence emissions with L929 cellular assay and were non-toxic. Magnetic hyperthermia response of Fe3O4 and polymer (polyaniline/polypyrrole)-coated Fe3O4 was evaluated and all the samples exhibit hyperthermia activity in the range of 42-45 °C. Specific loss power (SLP) values of polyaniline and polypyrrole-coated Fe3O4 nanoparticles (5 and 10 mg/ml) exhibit a controlled heat generation with an increase in the magnetic field.


Asunto(s)
Compuestos de Anilina/química , Diagnóstico por Imagen/métodos , Hipertermia Inducida/métodos , Nanopartículas de Magnetita/química , Polímeros/química , Pirroles/química , Compuestos de Anilina/efectos de la radiación , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Compuestos Férricos/síntesis química , Compuestos Férricos/química , Compuestos Férricos/efectos de la radiación , Humanos , Campos Magnéticos , Magnetismo/métodos , Nanopartículas de Magnetita/efectos de la radiación , Nanopartículas de Magnetita/uso terapéutico , Ensayo de Materiales , Gases em Plasma/química , Polímeros/efectos de la radiación , Pirroles/efectos de la radiación , Ondas de Radio , Propiedades de Superficie/efectos de la radiación , Difracción de Rayos X
3.
Chemistry ; 26(13): 2826-2836, 2020 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-31713928

RESUMEN

Strong plasmon absorption in the near-infrared (NIR) region renders gold nanorods (GNRs) amenable for biomedical applications, particularly for photothermal therapy. However, these nanostructures have not been explored for their imaging potential because of their weak emission profile. In this study, the weak fluorescence emission of GNRs is tuned to match that of the absorption of a photosensitizer (PS) molecule, and energy transfer from the GNR to PS enhances the emission profile of the GNR-PS combination. GNR complexes generally quench the fluorescence emission of nearby chromophores. However, herein, the complex retains or rather enhances the fluorescence through competition in energy transfer. Excitation-dependent energy transfer has been explained experimentally and theoretically by using DFT calculations, the CIE chromaticity diagram, and power spectrum. The final GNR-PS complex modified for tumor specificity serves as an excellent organ-specific theranostic probe for bioimaging and dual therapy both in vitro and in vivo. Principal component analysis designates photodynamic therapy a better candidate than that of photothermal therapy for long-term efficacy in vivo.


Asunto(s)
Oro/química , Nanotubos/química , Fármacos Fotosensibilizantes/química , Nanomedicina Teranóstica/métodos , Animales , Transferencia de Energía , Humanos , Luminiscencia , Nanoestructuras
4.
Microsc Microanal ; 26(3): 419-428, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32284074

RESUMEN

This study tests the use of a constrained nonnegative matrix factorization (NMF) algorithm to explore the comparatively new field of chemometric microscopy to support tissue diagnosis. The algorithm can extract the spectral signature and the absolute concentration map of endogenous fluorophores from wide-field microscopic images. The resultant data distinguished normal and fibrous calvarial tissues, based on the changes in their spectral signatures. The absolute concentration map of endogenous fluorophores, nicotinamide adenine dinucleotide (NADH), flavin adenine dinucleotide (FAD), and lipofuscin were derived from microscopic images and compared with the fluorescence from pure fluorophores. While the absolute concentration of NADH increased, the same of FAD and lipofuscin decreased from a normal to fibrous calvarial condition. An increase in the optical redox ratio, possibly due to the metabolic changes during the development of fibrosis, was observed. Differentiating tissue types using the absolute concentration map was found to be considerably more precise than that achievable with relative concentration. The quantification of fluorophores with reference to the absolute concentration map can eliminate uncertainties due to system responses or measurement details, thereby generating more biologically apposite data. Wide-field microscopy augmented with a constrained NMF algorithm could emerge as an advanced diagnostic tool, potentially heralding the emergence of chemometric microscopy.


Asunto(s)
Algoritmos , Imagen Óptica/métodos , Técnicas de Diagnóstico Neurológico , Flavina-Adenina Dinucleótido , Fluorescencia , Colorantes Fluorescentes , Lipofuscina , NAD
5.
Chemistry ; 24(43): 10999-11007, 2018 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-29806867

RESUMEN

Organelle-targeted photosensitizers (PSs) having luminescence properties are potential theranostic agents for simultaneous luminescence imaging and photodynamic therapy. Herein, we report a water-soluble luminescent cyclometalated IrIII complex, Ir-Bp-Ly, as a lysosome-targeted theranostic probe. Ir-Bp-Ly exhibits exceptional photophysical properties, with good triplet-state quantum yield (0.90), singlet oxygen generation quantum yield (0.71 at pH 4), and long lifetime (1.47 µs). Interestingly, Ir-Bp-Ly localizes mostly in lysosomes due to the presence of morpholine units, suggesting its potential use as a lyso-tracker. Ir-Bp-Ly displays a notable PDT effect in C6 glioma cells, efficiently generating reactive oxygen species owing to close proximity between the energy levels of its triplet state and those of molecular oxygen (3 O2 ). The mechanism of cell death has been studied through caspase-3/7 and flow cytometry analyses, which clearly established the apoptotic pathway.


Asunto(s)
Complejos de Coordinación/química , Iridio/química , Lisosomas/metabolismo , Fármacos Fotosensibilizantes/química , Apoptosis/efectos de los fármacos , Apoptosis/efectos de la radiación , Caspasa 3/metabolismo , Caspasa 7/metabolismo , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Complejos de Coordinación/farmacología , Complejos de Coordinación/uso terapéutico , Técnicas Electroquímicas , Glioma/tratamiento farmacológico , Glioma/metabolismo , Glioma/patología , Humanos , Rayos Láser , Luz , Lisosomas/efectos de los fármacos , Fotoquimioterapia , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Teoría Cuántica , Oxígeno Singlete/química , Oxígeno Singlete/metabolismo
6.
Faraday Discuss ; 207: 423-435, 2018 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-29355869

RESUMEN

Cancer, a condition with uncontrolled cell division, is the second leading cause of death worldwide. The currently available techniques for the imaging and treatment of cancer have their own limitations and hence a combination of more than one modality is expected to increase the efficacy of both diagnosis and treatment. In the present study, we have developed a multimodal imaging and therapeutic system by incorporating a chemotherapeutic drug, mitoxantrone (MTX) onto PEG coated gold nanorods (GNR). Strong absorption in the near-infrared (NIR) and visible regions qualifies GNR as an efficient photothermal (PTT) agent upon irradiation with either a NIR or visible laser. Additionally, the enhanced electric field of GNR makes it a suitable substrate for surface enhanced Raman scattering (SERS). Modification of GNR with amino PEG offers biocompatibility without affecting its optical property. In order to achieve tumor specificity, GNR-PEG was conjugated with tumor specific marker that can target cancer cells, leaving the normal cells unaffected. The incorporation of fluorescent chemotherapeutic drug mitoxantrone onto GNR-PEG facilitates chemotherapy as well as fluorescence imaging. The therapeutic efficacy of the developed GNR based system is tracked using fluorescence imaging and Raman imaging. The careful design of the system also facilitates the controlled release of the drug by photothermal triggering. Likewise, the imaging modality could be chosen as either Raman or fluorescence to monitor drug release in accordance with irradiation. The physico-chemical properties, and drug release profiles under different physiological conditions have been well studied. Finally, the developed system was tested for its therapeutic efficacy using cancer cells, in vitro. The receptor mediated cell uptake was more effective in folate receptor over-expressing cancer cells than in the normal and low-expressing cells. Accordingly the percentage of cell death was higher in folate receptor over-expressing cancer cells, which was further enhanced due to the effect of the dual therapeutic approach. The cell uptake and treatment efficacy was monitored using fluorescence microscopy and SERS. In conclusion, the developed GNR-PEG-MTX system is found to be an efficient multimodal therapeutic agent against cancer which could be tracked using two different techniques.


Asunto(s)
Antineoplásicos/farmacología , Oro/química , Nanotubos/química , Neoplasias/diagnóstico por imagen , Neoplasias/tratamiento farmacológico , Imagen Óptica , Animales , Antineoplásicos/química , Muerte Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Ratones , Tamaño de la Partícula , Ratas , Propiedades de Superficie
7.
Analyst ; 140(11): 3773-80, 2015 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-25853289

RESUMEN

Worldwide, liver cancer is the fifth most common cancer in men and seventh most common cancer in women. Intoxicant-induced liver injury is one of the major causes for severe structural damage with fibrosis and functional derangement of the liver leading to cancer in its later stages. This report focuses on the minimally invasive autofluorescence spectroscopic (AFS) studies on intoxicant, carbon tetrachloride (CCl4)-induced liver damage in a rodent model. Different stages of liver damage, including the reversed stage, on stoppage of the intoxicant are examined. Emission from prominent fluorophores, such as collagen, nicotinamide adenine dinucleotide (NADH), and flavin adenine dinucleotide (FAD), and variations in redox ratio have been studied. A direct correlation between the severity of the disease and the levels of collagen and redox ratio was observed. On withdrawal of the intoxicant, a gradual reversal of the disease to normal conditions was observed as indicated by the decrease in collagen levels and redox ratio. Multivariate statistical techniques and principal component analysis followed by linear discriminant analysis (PC-LDA) were used to develop diagnostic algorithms for distinguishing different stages of the liver disease based on spectral features. The PC-LDA modeling on a minimally invasive AFS dataset yielded diagnostic sensitivities of 93%, 87% and 87% and specificities of 90%, 98% and 98% for pairwise classification among normal, fibrosis, cirrhosis and reversal conditions. We conclude that AFS along with PC-LDA algorithm has the potential for rapid and accurate minimally invasive diagnosis and detection of structural changes due to liver injury resulting from various intoxicants.


Asunto(s)
Tetracloruro de Carbono/toxicidad , Enfermedad Hepática Inducida por Sustancias y Drogas/diagnóstico , Progresión de la Enfermedad , Espectrometría de Fluorescencia/métodos , Animales , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Modelos Animales de Enfermedad , Masculino , Análisis Multivariante , Ratas , Ratas Wistar
8.
J Fluoresc ; 25(4): 931-9, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25948235

RESUMEN

The present study is designed to understand the nature of endogenous fluorophores and cellular metabolism that occur in the experimental oral carcinogenesis and to assess their feasibility for antitumor efficacy of hesperetin-loaded nanoparticles (HETNPs) in comparison with native hesperetin (HET) against 7,12-dimethyl benz(a) anthracene (DMBA)-induced oral carcinogenesis using fluorescence spectroscopy. The fluorescence emission spectra of the control and the experimental buccal mucosa are recorded at an excitation wavelength of 320 nm with an emission ranging from 350 to 550 nm. The results show that there is a reduced contribution from the emission of collagen, nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FAD), in DMBA-induced tumor tissues as compared with the control tissues. Furthermore, there was significant decrease in the optical redox ratio [(FAD/ (NADH + FAD)] is observed in DMBA-induced tumor tissues, which indicates an increased metabolic activity when compared to the control tissues. Oral administration of HET and its nanoparticulates restored the status of endogenous fluorophores emission and would have a higher redox ratio in the buccal mucosa of DMBA painted animals. Taken together, the treatment of nanoparticulate hesperetin was found to be more effective than native hesperetin in improving the status of endogenous fluorophores to a near normal range in DMBA-induced hamster buccal pouch carcinogenesis. The results of this study raise the important possibility that fluorescence spectroscopy in conjunction with PC-LDA has tremendous potential for monitor or potentially predict response to therapy.


Asunto(s)
9,10-Dimetil-1,2-benzantraceno/toxicidad , Carcinoma de Células Escamosas/tratamiento farmacológico , Hesperidina/farmacología , Neoplasias de la Boca/tratamiento farmacológico , Nanopartículas/administración & dosificación , Espectrometría de Fluorescencia/métodos , Animales , Carcinogénesis , Carcinógenos/toxicidad , Carcinoma de Células Escamosas/inducido químicamente , Carcinoma de Células Escamosas/patología , Cricetinae , Masculino , Mesocricetus , Neoplasias de la Boca/inducido químicamente , Neoplasias de la Boca/patología , Análisis Multivariante , Nanopartículas/química , Curva ROC
9.
Phys Chem Chem Phys ; 17(6): 4609-19, 2015 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-25586703

RESUMEN

Despite the success in the use of superparamagnetic iron oxide nanoparticles (SPION) for various scientific applications, its potential in biomedical fields has not been exploited to its full potential. In this context, an in situ substitution of Mn(2+) was performed in SPION and a series of ferrite particles, MnxFe1-xFe2O4 with a varying molar ratio of Mn(2+) : Fe(2+) where 'x' varies from 0-0.75. The ferrite particles obtained were further studied in MRI contrast applications and showed appreciable enhancement in their MRI contrast properties. Manganese substituted ferrite nanocrystals (MnIOs) were synthesized using a novel, one-step aqueous co-precipitation method based on the use of a combination of sodium hydroxide and trisodium citrate (TSC). This approach yielded the formation of highly crystalline, superparamagnetic MnIOs with good control over their size and bivalent Mn ion crystal substitution. The presence of a TSC hydrophilic layer on the surface facilitated easy dispersion of the materials in an aqueous media. Primary characterizations such as structural, chemical and magnetic properties demonstrated the successful formation of manganese substituted ferrite. More significantly, the MRI relaxivity of the MnIOs improved fourfold when compared to SPION crystals imparting high potential for use as an MRI contrast agent. Further, the cytocompatibility and blood compatibility evaluations demonstrated excellent cell morphological integrity even at high concentrations of nanoparticles supporting the non-toxic nature of nanoparticles. These results open new horizons for the design of biocompatible water dispersible ferrite nanoparticles with good relaxivity properties via a versatile and easily scalable co-precipitation route.


Asunto(s)
Medios de Contraste/química , Compuestos Férricos/química , Manganeso/química , Nanopartículas/química , Agregación Celular , Medios de Contraste/toxicidad , Eritrocitos/citología , Eritrocitos/efectos de los fármacos , Células HeLa , Hemólisis , Humanos , Leucocitos/citología , Leucocitos/efectos de los fármacos , Imagen por Resonancia Magnética , Ensayo de Materiales , Nanopartículas/toxicidad , Agregación Plaquetaria/efectos de los fármacos
10.
Small ; 10(14): 2771-5, 2740, 2014 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-24692349

RESUMEN

Hybrid nanomaterial based on quantum dots and SWCNTs is used for cellular imaging and photothermal therapy. Furthermore, the ligand conjugated hybrid system (FaQd@CNT) enables selective targeting in cancer cells. The imaging capability of quantum dots and the therapeutic potential of SWCNT are available in a single system with cancer targeting property. Heat generated by the system is found to be high enough to destroy cancer cells.


Asunto(s)
Nanotubos de Carbono , Fototerapia/métodos , Puntos Cuánticos/uso terapéutico , Animales , Muerte Celular , Línea Celular , Línea Celular Tumoral , Supervivencia Celular , Diagnóstico por Imagen , Femenino , Humanos , Terapia por Láser/métodos , Células MCF-7 , Ratones , Microscopía Electrónica de Transmisión , Nanotecnología , Nanotubos de Carbono/ultraestructura , Puntos Cuánticos/química
11.
J Mater Chem B ; 12(31): 7635-7645, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39007591

RESUMEN

Incomplete metabolism and non-biodegradable nature of norfloxacin (NORx) lead to its persistent residues in the environment and food, potentially fostering the emergence of antibiotic resistance and posing a significant threat to public health. Hence, we developed a norfloxacin sensor employing hydrothermally synthesized N-doped carbon dots (N-Ch-CQDs) from chitosan and PEI demonstrated high sensitivity and specificity towards the antibiotic detection. The quantum yield of excitation-dependent emission of N-Ch-CQDs was effectively tuned from 4.6 to 21.5% by varying the concentration of PEI (5-15%). With the enhanced fluorescence in the presence of norfloxacin, N-Ch-CQDs exhibited a linear detection range of 20-1400 nM with a limit of detection (LoD) of 9.3 nM. The high biocompatibility of N-Ch-CQDs was confirmed in the in vitro and in vivo model and showed the environment-friendly nature of the sensor. Detailed study elucidated the formation of strong hydrogen bonds between N-Ch-CQDs and NORx, leading to fluorescence enhancement. The developed sensor's capability to detect NORx was evaluated in water and milk samples. The recovery rate ranged from 98.5% to 103.5%, demonstrating the sensor's practical applicability. Further, the bioimaging potential of N-Ch-CQDs was demonstrated in both the in vitro (L929 cells) and in vivo model (C. elegans). The synergistic influence of the defecation pattern and functioning of intestinal barrier mitigates the translocation of N-Ch-CQDs into the reproductive organ of nematodes. This study revealed the bioimaging and fluorescent sensing ability of N-Ch-CQDs, which holds significant promise for extensive application in the biomedical field.


Asunto(s)
Técnicas Biosensibles , Carbono , Nitrógeno , Norfloxacino , Puntos Cuánticos , Norfloxacino/análisis , Carbono/química , Puntos Cuánticos/química , Técnicas Biosensibles/métodos , Animales , Nitrógeno/química , Caenorhabditis elegans , Antibacterianos/farmacología , Antibacterianos/análisis , Antibacterianos/química , Imagen Óptica , Tamaño de la Partícula , Leche/química , Ratones , Colorantes Fluorescentes/química , Colorantes Fluorescentes/síntesis química
12.
J Mater Chem B ; 12(3): 720-729, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38165308

RESUMEN

Nanoarchitectonics, an emerging strategy, presents a promising alternative for developing highly efficient next-generation functional materials. Multifunctional materials developed using nanoarchitectonics help to mimic biological molecules. Porphyrin-based molecules can be effectively utilized to design such assemblies. Metal nanocluster is one of the functional materials that can shed more insight into developing nanoarchitectonic materials. Herein, an inherently near-infrared (NIR) fluorescing copper nanocluster (CuC)-mediated structural assembly via protoporphyrin IX (PPIX) and doxorubicin (Dox) is demonstrated as the functional material. Dox-loaded porphyrin-mediated CuC assembly shows singlet oxygen generation and 66% drug release at 15 min. Furthermore, the efficacy of this material is tested for cancer diagnosis and bimodal therapeutic strategy due to the fluorescing ability of the cluster and loading of PPIX as well as the drug, respectively. The nanoarchitecture exhibits targeted imaging and 83% cell death in HeLa cells upon laser irradiation with 10 nmoles and 20 nmoles of PPIX and Dox, respectively.


Asunto(s)
Neoplasias , Porfirinas , Humanos , Cobre/química , Porfirinas/farmacología , Células HeLa , Medicina de Precisión , Doxorrubicina/química , Neoplasias/diagnóstico por imagen , Neoplasias/tratamiento farmacológico
15.
Beilstein J Nanotechnol ; 14: 988-1003, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37822722

RESUMEN

Lateral flow assays (LFAs) are currently the most widely used point-of-care testing technique with remarkable advantages such as simple operation, rapid analysis, portability, and low cost. Traditionally, gold nanoparticles are employed as tracer element in LFAs due to their strong localised surface plasmon resonance. However, this conventional LFA technique based on colorimetric analysis is neither useful to determine critical analytes with desired sensitivity, nor can it quantify the analytes. Various signal amplification strategies have been proposed to improve the sensitivity and the quantitative determination of analytes using LFAs. One of the promising strategies is to enhance the photothermal properties of nanomaterials to generate heat after light irradiation, followed by a temperature measurement to detect and quantify the analyte concentration. Recently, it has been observed that the nanoscale architecture of materials, including size, shape, and nanoscale composition, plays a significant role in enhancing the photothermal properties of nanomaterials. In this review, we discuss the nanoarchitectonics of nanomaterials regarding enhanced photothermal properties and their application in LFAs. Initially, we discuss various important photothermal materials and their classification along with their working principle. Then, we highlight important aspects of the nanoscale architecture (i.e., size, shape, and composition) to enable maximum light-to-heat conversion efficiency. Finally, we discuss some of the recent advances in photothermal LFAs and their application in detecting analytes.

16.
Dalton Trans ; 52(24): 8488, 2023 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-37282662

RESUMEN

Correction for 'An insight into the optical properties of a sub nanosize glutathione stabilized gold cluster' by Lakshmi V. Nair et al., Dalton Trans., 2016, 45, 11286-11291, https://doi.org/10.1039/C6DT01753C.

17.
Biomater Sci ; 11(23): 7692, 2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-37867424

RESUMEN

Correction for 'Optically controlled hybrid metamaterial of plasmonic spiky gold inbuilt graphene sheets for bimodal imaging guided multimodal therapy' by Ramapurath S. Jayasree et al., Biomater. Sci., 2020, 8, 3381-3391, https://doi.org/10.1039/D0BM00312C.

18.
Sci Rep ; 13(1): 12947, 2023 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-37558889

RESUMEN

Prolonged usage of traditional nanomaterials in the biological field has posed several short- and long-term toxicity issues. Over the past few years, smart nanomaterials (SNs) with controlled physical, chemical, and biological features have been synthesized in an effort to allay these challenges. The current study seeks to develop theranostic SNs based on iron oxide to enable simultaneous magnetic hyperthermia and magnetic resonance imaging (MRI), for chronic liver damage like liver fibrosis which is a major risk factor for hepatocellular carcinoma. To accomplish this, superparamagnetic iron oxide nanoparticles (SPIONs) were prepared, coated with a biocompatible and naturally occurring polysaccharide, alginate. The resultant material, ASPIONs were evaluated in terms of physicochemical, magnetic and biological properties. A hydrodynamic diameter of 40 nm and a transverse proton relaxation rate of 117.84 mM-1 s-1 pronounces the use of ASPIONs as an efficient MRI contrast agent. In the presence of alternating current of 300 A, ASPIONs could elevate the temperature to 45 °C or more, with the possibility of hyperthermia based therapeutic approach. Magnetic therapeutic and imaging potential of ASPIONs were further evaluated respectively in vitro and in vivo in HepG2 carcinoma cells and animal models of liver fibrosis, respectively. Finally, to introduce dual imaging capability along with magnetic properties, ASPIONs were conjugated with near infrared (NIR) dye Atto 700 and evaluated its optical imaging efficiency in animal model of liver fibrosis. Histological analysis further confirmed the liver targeting efficacy of the developed SNs for Magnetic theranostics and optical imaging as well as proved its short-term safety, in vivo.


Asunto(s)
Carcinoma Hepatocelular , Hipertermia Inducida , Neoplasias Hepáticas , Nanopartículas de Magnetita , Animales , Carcinoma Hepatocelular/diagnóstico por imagen , Carcinoma Hepatocelular/terapia , Línea Celular Tumoral , Hipertermia Inducida/métodos , Neoplasias Hepáticas/diagnóstico por imagen , Neoplasias Hepáticas/terapia , Imagen por Resonancia Magnética/métodos , Cirrosis Hepática/diagnóstico por imagen , Cirrosis Hepática/terapia , Hipertermia , Nanopartículas de Magnetita/química
19.
Methods Appl Fluoresc ; 11(2)2023 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-36854197

RESUMEN

Hybrid nanoparticles are innovative invention of last decade designed to overcome limitations of single-component nanoparticles by introducing multiple functionalities through combining two or more different nanoparticles. In this study, we are reporting development of magneto-fluorescent hybrid nanoparticles by combining iron oxide and carbon nanoparticles to enablein vivofluorescence imaging which also has all the required characteristic properties to use as Magnetic Resonance Imaging (MRI) contrast agent. In order to achieve dual-functional imaging, alginate and pullulan coated super paramagnetic iron oxide nanoparticles (ASPION and PSPION) and Carbon dots (Cdts) were synthesised separately. ASPIONs and PSPIONs were further chemically conjugated with Cdts and developed dual-functional nanohybrid particles ASPION-Cdts and PSPION-Cdts. Subsequently, evaluation of the materials for its size, functionalisation efficiency, fluorescence and magnetic properties, biocompatibility and cellular uptake efficiency has been carried out. Fluorescence imaging of liver fibrosis was performedin vivoin rodent model of liver fibrosis using the two nanohybrids, which is further confirmed by high fluorescence signal from the harvested liver.


Asunto(s)
Carbono , Nanopartículas , Humanos , Carbono/química , Compuestos Férricos/química , Cirrosis Hepática/inducido químicamente , Cirrosis Hepática/diagnóstico por imagen , Nanopartículas/química , Medios de Contraste/química
20.
J Mater Chem B ; 11(21): 4715-4724, 2023 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-37171084

RESUMEN

Alzheimer's disease (AD) is a progressive complex neurodegenerative disorder affecting millions of individuals worldwide. Currently, there is no effective treatment for AD. AD is characterized by the deposition of amyloid plaques/fibrils. One major strategy for managing this disease is by slowing the progression of AD using different drugs which could potentially limit free-radical formation, oxidative stress and lipid peroxidation and promote the survival of neurons exposed to ß-amyloid. Inhibition of amyloid fibrillization and clearance of amyloid plaques/fibrils are essential for the prevention and treatment of AD. The thiophilic interaction between the side chain of an aromatic residue in a polypeptide and a sulphur atom of the compound can effectively inhibit amyloid fibril formation. In this work, we have synthesized cysteine-capped gold nanoclusters (Cy-AuNCs) which exhibit inherent red emission and can disintegrate amyloid fibrils through the aforementioned thiophilic interactions. Herein, we also used molecular docking to study the thiophilic interactions between the sulphur atom of Cy-AuNCs and the aromatic rings of the protein. Finally, the gold cluster was functionalized with a brain targeting molecule, Levodopa (AuCs-LD), to specifically target the brain and to facilitate passage through the blood brain barrier (BBB). Both Cy-AuNCs and AuCs-LD showed good biocompatibility and the inherent fluorescence properties of nanoclusters enabled real time imaging. The efficacy of the nanoclusters to disintegrate amyloid fibrils and their ability to cross the BBB were demonstrated both in vitro and in vivo in the BBB model and the AD animal model respectively. Our results imply that nanoparticle-based artificial molecular chaperones may offer a promising therapeutic approach for AD.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Animales , Péptidos beta-Amiloides/metabolismo , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Cisteína , Amiloide/química , Placa Amiloide , Oro/química , Simulación del Acoplamiento Molecular , Azufre/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA