Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
FASEB J ; 36(11): e22590, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36208289

RESUMEN

Many circular RNAs (circRNAs) involved in the osteogenesis of human bone marrow mesenchymal stem cells (hBMSCs) have recently been discovered. The role of circHIPK3 in osteogenesis has yet to be determined. Cell transfection was conducted using small-interfering RNAs (siRNAs). Expression of osteogenic markers were detected by quantitative reverse transcription-polymerase chain reaction, western blotting analysis, and immunofluorescence staining. Ectopic bone formation models in nude mice were used to examined the bone formation ability in vivo. The autophagy flux was examined via western blotting analysis, immunofluorescence staining and transmission electron microscopy analysis. RNA immunoprecipitation (RIP) analysis was carried out to analyze the binding between human antigen R (HUR) and circHIPK3 or autophagy-related 16-like 1 (ATG16L1). Actinomycin D was used to determine the mRNA stability. Our results demonstrated that silencing circHIPK3 promoted the osteogenesis of hBMSCs while silencing the linear mHIPK3 did not affect osteogenic differentiation, both in vivo and in vitro. Moreover, we found that knockdown of circHIPK3 activated autophagy flux. Activation of autophagy enhanced the osteogenesis of hBMSCs and inhibition of autophagy reduced the osteogenesis through using autophagy regulators chloroquine and rapamycin. We also discovered that circHIPK3 and ATG16L1 both bound to HUR. Knockdown of circHIPK3 released the binding sites of HUR to ATG16L1, which stabilized the mRNA expression of ATG16L1, resulting in the upregulation of ATG16L1 and autophagy activation. CircHIPK3 functions as an osteogenesis and autophagy regulator and has the potential for clinical application in the future.


Asunto(s)
Células Madre Mesenquimatosas , Osteogénesis , Animales , Autofagia/genética , Células de la Médula Ósea , Diferenciación Celular/fisiología , Células Cultivadas , Cloroquina , Dactinomicina , Humanos , Células Madre Mesenquimatosas/metabolismo , Ratones , Ratones Desnudos , Osteogénesis/genética , ARN Circular/genética , ARN Mensajero/metabolismo , Sirolimus/metabolismo
2.
Connect Tissue Res ; 64(6): 532-542, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37427853

RESUMEN

AIM OF THE STUDY: To investigate the role of MetaLnc9 in the osteogenesis of human bone marrow mesenchymal stem cells (hBMSCs). MATERIALS AND METHODS: We used lentiviruses to knockdown or overexpress MetaLnc9 in hBMSCs. qRT-PCR was employed to determine the mRNA levels of osteogenic-related genes in transfected cells. ALP staining and activity assay, ARS staining and quantification were used to identify the degree of osteogenic differentiation. Ectopic bone formation was conducted to examine the osteogenesis of transfected cells in vivo. AKT pathway activator SC-79 and inhibitor LY294002 were used to validate the relationship between MetaLnc9 and AKT signaling pathway. RESULTS: The expression of MetaLnc9 was significantly upregulated in the osteogenic differentiation of hBMSCs. MetaLnc9 knockdown inhibited the osteogenesis of hBMSCs, whereas overexpression of it promoted the osteogenic differentiation both in vitro and in vivo. Taking a deeper insight, we found that MetaLnc9 enhanced the osteogenic differentiation by activating AKT signaling. The inhibitor of AKT signaling LY294002 could reverse the positive effect on osteogenesis brought by MetaLnc9 overexpression, whereas the activator of AKT signaling SC-79 could reverse the negative effect caused by MetaLnc9 knockdown. CONCLUSION: Our works uncovered a vital role of MetaLnc9 in osteogenesis via regulating the AKT signaling pathway. [Figure: see text].


Asunto(s)
Células Madre Mesenquimatosas , Osteogénesis , Humanos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Células Cultivadas , Transducción de Señal , Diferenciación Celular , Células Madre Mesenquimatosas/metabolismo , Células de la Médula Ósea
3.
Biochem Biophys Res Commun ; 524(2): 516-522, 2020 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-32014253

RESUMEN

Bone marrow mesenchymal stem cells (BMSCs), which have multipotential differentiation and self-renewal ability, have been becoming an attractive source of seed cells for bone tissue engineering. Nonetheless, the precise underlying mechanisms of osteogenesis of BMSCs have not been fully understood. Retinoic acid-induced gene 3 (RAI3) has been found to play important roles in mesenchymal stem cells (MSCs) adipogenesis in our previous study. However, its function in the osteogenic differentiation of BMSCs remains unknown. In this study, we found that RAI3 was significantly reduced in osteogenically differentiated BMSCs; RAI3 knockdown promoted osteogenesis of BMSCs both in vitro and in vivo. Moreover, we found RAI3 knockdown significantly upregulated the expression level of phosphorylated signal transducer and activator of transcription 3 (p-STAT3), and AG-490 which can inhibit the STAT3 signaling reversed the enhancing effect of RAI3 knockdown on the osteogenic differentiation of BMSCs. These results suggest that RAI3 plays important roles in BMSCs osteogenesis with an involvement of the STAT3 signaling, which might open a new avenue to explore BMSCs osteogenesis for the application of BMSCs in bone regeneration.


Asunto(s)
Células Madre Mesenquimatosas/citología , Osteogénesis , Receptores Acoplados a Proteínas G/genética , Factor de Transcripción STAT3/metabolismo , Diferenciación Celular , Células Cultivadas , Regulación hacia Abajo , Técnicas de Silenciamiento del Gen , Humanos , Células Madre Mesenquimatosas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal
4.
Biochem Biophys Res Commun ; 493(1): 618-624, 2017 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-28870805

RESUMEN

Retinoic acid-induced protein 3 (RAI3) has been found to play significant roles in embryonic development, cellular proliferation and differentiation, but its role in adipogenesis has not been explored. In this study, we discovered RAI3 was downregulated during the adipogenic differentiation of human adipose derived stem cells (hASCs). Moreover, we demonstrated that knockdown of RAI3 promoted adipogenic differentiation of hASCs both in vitro and in vivo. Mechanistically, our findings showed that inhibition of RAI3 in hASCs reduced the expression of ß-catenin, and lithium chloride which can activate the ß-catenin pathway abolished the effect of RAI3 knockdown on the adipogenesis. These results suggest RAI3 plays an important role in adipogenesis of hASCs and may have a potential use in the future application.


Asunto(s)
Adipocitos/citología , Adipocitos/metabolismo , Adipogénesis/fisiología , Receptores Acoplados a Proteínas G/metabolismo , Células Madre/citología , Células Madre/metabolismo , beta Catenina/metabolismo , Diferenciación Celular/fisiología , Células Cultivadas , Regulación hacia Abajo/fisiología , Técnicas de Silenciamiento del Gen , Humanos
5.
Stem Cells ; 34(11): 2707-2720, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27334046

RESUMEN

Osteogenic differentiation and bone formation is suppressed under condition of inflammation induced by proinflammation cytokines. A number of studies indicate miRNAs play a significant role in tumor necrosis factor-α-induced inhibition of bone formation, but whether long non-coding RNAs are also involved in this process remains unknown. In this study, we evaluated the role of MIR31HG in osteogenesis of human adipose-derived stem cells (hASCs) in vitro and in vivo. The results suggested that knockdown of MIR31HG not only significantly promoted osteogenic differentiation, but also dramatically overcame the inflammation-induced inhibition of osteogenesis in hASCs. Mechanistically, we found MIR31HG regulated bone formation and inflammation via interacting with NF-κB. The p65 subunit bound to the MIR31HG promoter and promoted MIR31HG expression. In turn, MIR31HG directly interacted with IκBα and participated in NF-κB activation, which builds a regulatory circuitry with NF-κB. Targeting this MIR31HG-NF-κB regulatory loop may be helpful to improve the osteogenic capacity of hASCs under inflammatory microenvironment in bone tissue engineering. Stem Cells 2016;34:2707-2720.


Asunto(s)
Retroalimentación Fisiológica , Inhibidor NF-kappaB alfa/genética , Subunidad p50 de NF-kappa B/genética , Osteoblastos/metabolismo , ARN Largo no Codificante/genética , Células Madre/metabolismo , Factor de Transcripción ReIA/genética , Tejido Adiposo/citología , Tejido Adiposo/efectos de los fármacos , Tejido Adiposo/metabolismo , Animales , Diferenciación Celular , Regulación de la Expresión Génica , Humanos , Lipopolisacáridos/farmacología , Ratones Endogámicos BALB C , Ratones Desnudos , Inhibidor NF-kappaB alfa/metabolismo , Subunidad p50 de NF-kappa B/metabolismo , Osteoblastos/citología , Osteoblastos/efectos de los fármacos , Osteogénesis/efectos de los fármacos , Osteogénesis/genética , Cultivo Primario de Células , Regiones Promotoras Genéticas , Unión Proteica , ARN Largo no Codificante/antagonistas & inhibidores , ARN Largo no Codificante/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Transducción de Señal , Trasplante de Células Madre , Células Madre/citología , Células Madre/efectos de los fármacos , Ingeniería de Tejidos , Factor de Transcripción ReIA/metabolismo , Trasplante Heterólogo
6.
Stem Cells ; 34(9): 2332-41, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27300495

RESUMEN

Human mesenchymal stem cells (MSCs) are multipotent progenitor cells that can differentiate into osteoblasts, chondrocytes, and adipocytes. The importance of epigenetic regulation for osteogenic differentiation of MSCs is widely accepted. However, the molecular mechanisms are poorly understood. Here, we show that histone H3K9 acetyltransferase PCAF plays a critical role in osteogenic differentiation of MSCs. Knockdown of PCAF significantly reduced the bone formation both in vitro and in vivo. Mechanistically, PCAF controls BMP signaling genes expression by increasing H3K9 acetylation. Most importantly, PCAF expression is significantly decreased in bone sections of ovariectomized or aged mice. Histone modification enzyme is chemically modifiable; therefore, PCAF may represent a novel therapeutic target for stem cell-mediated regenerative medicine and the treatment of osteoporosis. Stem Cells 2016;34:2332-2341.


Asunto(s)
Proteínas Morfogenéticas Óseas/metabolismo , Diferenciación Celular , Histonas/metabolismo , Osteogénesis , Osteoporosis/metabolismo , Transducción de Señal , Factores de Transcripción p300-CBP/metabolismo , Adipocitos/citología , Adipocitos/metabolismo , Animales , Diferenciación Celular/genética , Linaje de la Célula , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Células HEK293 , Humanos , Células Madre Mesenquimatosas/metabolismo , Ratones Endogámicos C57BL , Ratones Desnudos , Osteogénesis/genética , Osteoporosis/patología , Regiones Promotoras Genéticas/genética , Transducción de Señal/genética , Proteínas Smad/metabolismo
7.
Mol Cell Biochem ; 433(1-2): 51-60, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28382492

RESUMEN

lncRNAs are an emerging class of regulators involved in multiple biological processes. MEG3, an lncRNA, acts as a tumor suppressor, has been reported to be linked with osteogenic differentiation of MSCs. However, limited knowledge is available concerning the roles of MEG3 in the multilineage differentiation of hASCs. The current study demonstrated that MEG3 was downregulated during adipogenesis and upregulated during osteogenesis of hASCs. Further functional analysis showed that knockdown of MEG3 promoted adipogenic differentiation, whereas inhibited osteogenic differentiation of hASCs. Mechanically, MEG3 may execute its role via regulating miR-140-5p. Moreover, miR-140-5p was upregulated during adipogenesis and downregulated during osteogenesis in hASCs, which was negatively correlated with MEG3. In conclusion, MEG3 participated in the balance of adipogenic and osteogenic differentiation of hASCs, and the mechanism may be through regulating miR-140-5p.


Asunto(s)
Adipogénesis , Tejido Adiposo/metabolismo , Diferenciación Celular , Células Madre Mesenquimatosas/metabolismo , MicroARNs/metabolismo , Osteogénesis , ARN Largo no Codificante/metabolismo , Tejido Adiposo/citología , Humanos , Células Madre Mesenquimatosas/citología , MicroARNs/genética , ARN Largo no Codificante/genética
8.
Cell Biol Int ; 41(1): 33-41, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27797128

RESUMEN

Recently, long non-coding RNAs (lncRNAs) have emerged as critical players in gene regulation for multiple biological processes. However, their roles and functions in human adipose-derived stem cells (hASCs) differentiation remain unclear. In the present study, we investigated the role of lncRNA myocardial infarction-associated transcript (MIAT) in the osteogenic differentiation of hASCs. We found that the expression of MIAT was downregulated in a time-dependent manner during hASCs osteoinduction. MIAT knockdown promoted osteogenic differentiation of hASCs both in vitro and in vivo. Moreover, MIAT expression was increased upon tumor necrosis factor-α treatment and MIAT knockdown reversed the negative effects of inflammation on osteoblastic differentiation. This study improves our knowledge of lncRNAs in governing the osteogenic differentiation of hASCs and may provide novel therapeutic strategies for treating bone diseases.


Asunto(s)
Tejido Adiposo/citología , Diferenciación Celular/genética , Técnicas de Silenciamiento del Gen , Osteogénesis/genética , ARN Largo no Codificante/genética , Células Madre/citología , Células Madre/metabolismo , Animales , Diferenciación Celular/efectos de los fármacos , Coristoma/patología , Regulación hacia Abajo/efectos de los fármacos , Regulación hacia Abajo/genética , Humanos , Ratones Endogámicos BALB C , Ratones Desnudos , Osteogénesis/efectos de los fármacos , ARN Largo no Codificante/metabolismo , Células Madre/efectos de los fármacos , Factores de Tiempo , Factor de Necrosis Tumoral alfa/farmacología , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/genética
9.
Regen Ther ; 26: 775-782, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39309396

RESUMEN

Understanding the precise mechanism of BMSC (bone marrow mesenchymal stem cell) osteogenesis is critical for metabolic bone diseases and bone reconstruction. The histone-lysine N-methyltransferase 2D (KMT2D) acts as an important methyltransferase related with congenital skeletal disorders, yet the function of KMT2D in osteogenesis was unclear. Here we found that KMT2D expression was decreased in BMSCs collected from ovariectomized mice. Moreover, during human BMSC differentiation under mineralization induction, the mRNA level of KMT2D was gradually elevated. After KMT2D knockdown, the in vitro osteogenic differentiation of BMSCs was inhibited, while the in vivo bone formation potential of BMSCs was attenuated. Further, in BMSCs, KMT2D knockdown reduced the level of phosphorylated protein kinase B (p-AKT). SC-79, a common activator of AKT signaling, reversed the suppressing influence of KMT2D knockdown on BMSCs differentiation towards osteoblast. These results indicate that the KMT2D-AKT pathway plays an essential role in the osteogenesis process of human BMSCs (hBMSCs), which might provide new avenues for the molecular medicine of bone diseases and regeneration.

10.
Nano Res ; 16(2): 1992-2002, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36405985

RESUMEN

Single-atom nanozymes (SANs) are the new emerging catalytic nanomaterials with enzyme-mimetic activities, which have many extraordinary merits, such as low-cost preparation, maximum atom utilization, ideal catalytic activity, and optimized selectivity. With these advantages, SANs have received extensive research attention in the fields of chemistry, energy conversion, and environmental purification. Recently, a growing number of studies have shown the great promise of SANs in biological applications. In this article, we present the most recent developments of SANs in anti-infective treatment, cancer diagnosis and therapy, biosensing, and antioxidative therapy. This text is expected to better guide the readers to understand the current state and future clinical possibilities of SANs in medical applications.

11.
Tissue Cell ; 85: 102223, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37776785

RESUMEN

Periodontitis represents a severe inflammatory illness in tooth supporting tissue. It has been supported that cAMP response element binding protein 1 (CREB1), a common transcription factor, extensively participates in osteogenic differentiation. Here, the current study was to look into the impacts of CREB1 on the process of periodontitis and its possible action mechanism. After human periodontal ligament stem cells (PDLSCs) were challenged with zoledronic acid (ZA), CREB1 expression was examined with RT-qPCR and western blotting. CCK-8 assay appraised cell activity. Following CREB1 elevation or/and vascular endothelial growth factor (VEGF) silencing in ZA-treated PDLSCs, CCK-8 and TUNEL assays separately estimated cell viability and apoptosis. Western blotting tested the expression of apoptosis- and osteogenic differentiation-associated proteins. ALP staining measured PDLSCs osteogenic ability and ARS staining estimated mineralized nodule formation. JASPAR predicted the potential binding of CREB1 with VEGF promoter, which was then testified by ChIP and luciferase reporter assays. RT-qPCR and western blotting tested VEGF expression. CREB1 expression was declined in ZA-exposed PDLSCs and CREB1 elevation exacerbated the viability and osteogenic differentiation while obstructed the apoptosis of PDLSCs. Additionally, CREB1 bond to VEGF promoter and transcriptionally activated VEGF expression. Further, VEGF absence partially stimulated the apoptosis while suppressed the osteogenic differentiation of CREB1-overexpressing PDLSCs treated by ZA. To be concluded, CREB1 might activate VEGF transcription to obstruct the apoptosis while contribute to the osteogenic differentiation of ZA-treated PDLSCs.


Asunto(s)
Osteogénesis , Periodontitis , Humanos , Apoptosis/genética , Diferenciación Celular/fisiología , Proliferación Celular , Células Cultivadas , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Osteogénesis/fisiología , Ligamento Periodontal , Periodontitis/metabolismo , Transducción de Señal/fisiología , Sincalida/metabolismo , Células Madre , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , Ácido Zoledrónico/farmacología , Ácido Zoledrónico/metabolismo
12.
Stem Cell Res Ther ; 11(1): 450, 2020 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-33097082

RESUMEN

BACKGROUND: Heat shock protein B7 (HSPB7), which belongs to small heat shock protein family, has been reported to be involved in diverse biological processes and diseases. However, whether HSPB7 regulates osteogenic differentiation of human adipose derived stem cells (hASCs) remains unexplored. METHODS: The expression level of HSPB7 during the osteogenesis of hASCs was examined by quantitative reverse transcription polymerase chain reaction (qRT-PCR) and Western blot analysis. Lentivirus transfection was used to knock down or overexpress HSPB7, which enabled us to investigate the effect of HSPB7 on osteogenic differentiation of hASCs. U0126 and extracellular signal-regulated protein kinase 1/2 (ERK1/2) siRNA were used to identify the mechanism of the HSPB7/ERK1/2 axis in regulating osteogenic differentiation of hASCs. Moreover, ectopic bone formation in nude mice and osteoporosis mice model was used to investigate the effect of HSPB7 on osteogenesis in vivo. RESULTS: In this study, we found the expression of HSPB7 was significantly downregulated during the osteogenic differentiation of hASCs. HSPB7 knockdown remarkably promoted osteogenic differentiation of hASCs, while HSPB7 overexpression suppressed osteogenic differentiation of hASCs both in vitro and in vivo. Moreover, we discovered that the enhancing effect of HSPB7 knockdown on osteogenic differentiation was related to the activation of extracellular signal-regulated protein kinase (ERK) signaling pathway. Inhibition of ERK signaling pathway with U0126 or silencing ERK1/2 effectively blocked the stimulation of osteogenic differentiation induced by HSPB7 knockdown. Additionally, we found that HSPB7 expression was markedly increased in mouse bone marrow mesenchymal stem cells (mBMSCs) from the osteoporotic mice which suggested that HSPB7 might be utilized as a potential target in the development of effective therapeutic strategies to treat osteoporosis and other bone diseases. CONCLUSION: Taken together, these findings uncover a previously unrecognized function of HSPB7 in regulating osteogenic differentiation of hASCs, partly via the ERK signaling pathway.


Asunto(s)
Diferenciación Celular , Proteínas de Choque Térmico HSP27 , Osteogénesis , Tejido Adiposo/metabolismo , Animales , Células Cultivadas , Proteínas de Choque Térmico HSP27/genética , Proteínas de Choque Térmico HSP27/metabolismo , Humanos , Sistema de Señalización de MAP Quinasas , Ratones , Ratones Desnudos , Osteogénesis/genética , Transducción de Señal , Células Madre
13.
Cell Death Dis ; 11(7): 601, 2020 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-32732881

RESUMEN

Osteoporosis is a prevalent metabolic bone disease characterized by low bone mineral density and degenerative disorders of bone tissues. Previous studies showed the abnormal osteogenic differentiation of endogenous bone marrow mesenchymal stem cells (BMSCs) contributes to the development of osteoporosis. However, the underlying mechanisms by which BMSCs undergo osteogenic differentiation remain largely unexplored. Recently, long non-coding RNAs have been discovered to play important roles in regulating BMSC osteogenesis. In this study, we first showed MIR22HG, which has been demonstrated to be involved in the progression of several cancer types, played an important role in regulating BMSC osteogenesis. We found the expression of MIR22HG was significantly decreased in mouse BMSCs from the osteoporotic mice and it was upregulated during the osteogenic differentiation of human BMSCs. Overexpression of MIR22HG in human BMSCs enhanced osteogenic differentiation, whereas MIR22HG knockdown inhibited osteogenic differentiation both in vitro and in vivo. Mechanistically, MIR22HG promoted osteogenic differentiation by downregulating phosphatase and tensin homolog (PTEN) and therefore activating AKT signaling. Moreover, we found MIR22HG overexpression promoted osteoclastogenesis of RAW264.7 cells, which indicated that MIR22HG played a significant role in bone metabolism and could be a therapeutic target for osteoporosis and other bone-related diseases.


Asunto(s)
Diferenciación Celular/genética , Células Madre Mesenquimatosas/metabolismo , Osteogénesis/genética , Fosfohidrolasa PTEN/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Largo no Codificante/metabolismo , Animales , Activación Enzimática , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Ratones , Osteoclastos/metabolismo , Ovariectomía , Células RAW 264.7 , ARN Largo no Codificante/genética , Transducción de Señal , Microtomografía por Rayos X
14.
J Bone Miner Res ; 32(3): 508-521, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27696501

RESUMEN

An imbalance in osteogenesis and adipogenesis is a crucial pathological factor in the development of osteoporosis. Many attempts have been made to develop drugs to prevent and treat this disease. In the present study, we investigated the phenomenon whereby downregulation of SLC7A11 significantly enhanced the osteogenic differentiation of mesenchymal stem cells (MSCs) in vitro, and promoted the bone formation in vivo. Sulfasalazine (SAS), an inhibitor of SLC7A11, increased the osteogenic potential effectively. Mechanistically, inhibition of SLC7A11 by SAS treatment or knockdown of SLC7A11 increased BMP2/4 expression dramatically. In addition, we detected increased Slc7a11 expression in bone marrow MSCs of ovariectomized (OVX) mice. Remarkably, SAS treatment attenuated bone loss in ovariectomized mice. Together, our data suggested that SAS could be used to treat osteoporosis by enhancing osteogenic differentiation of MSCs. © 2016 American Society for Bone and Mineral Research.


Asunto(s)
Sistema de Transporte de Aminoácidos y+/antagonistas & inhibidores , Proteínas Morfogenéticas Óseas/metabolismo , Resorción Ósea/tratamiento farmacológico , Diferenciación Celular/efectos de los fármacos , Células Madre Mesenquimatosas/citología , Osteogénesis/efectos de los fármacos , Ovariectomía , Sulfasalazina/farmacología , Sistema de Transporte de Aminoácidos y+/metabolismo , Animales , Proteína Morfogenética Ósea 2/metabolismo , Proteína Morfogenética Ósea 4/metabolismo , Resorción Ósea/patología , Regulación hacia Abajo/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Femenino , Técnicas de Silenciamiento del Gen , Humanos , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Ratones Endogámicos BALB C , Osteoporosis/enzimología , Osteoporosis/patología , Sulfasalazina/uso terapéutico
15.
Sci Rep ; 7(1): 8080, 2017 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-28808264

RESUMEN

Adipogenesis plays an important role in the regulation of whole-body energy homeostasis and is inextricably related to obesity. Several studies have highlighted the relevance of microRNAs in adipocyte differentiation, but the contributions of long non-coding RNAs (lncRNAs) are still largely uncharacterized. Here, we determined that lncRNA MIR31HG is related to adipocyte lineage commitment. We demonstrated that knockdown of MIR31HG inhibited adipocyte differentiation, whereas overexpression of MIR31HG promoted adipogenesis in vitro and in vivo. Furthermore, inhibition of MIR31HG reduced the enrichment of active histone markers, histone H3 lysine 4 trimethylation (H3K4me3) and acetylation (AcH3), in the promoter of the adipogenic-related gene, fatty acid binding protein 4 (FABP4), leading to suppression of its expression and adipogenesis. These results provide new insights into the molecular mechanisms of MIR31HG in terms of adipogenesis and may have implications for obesity and associated disorders.


Asunto(s)
Adipocitos/fisiología , Diferenciación Celular/genética , Proteínas de Unión a Ácidos Grasos/genética , ARN Largo no Codificante/genética , Células Madre/fisiología , Acetilación , Adipogénesis/genética , Animales , Línea Celular , Histonas/genética , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Obesidad/genética , Regiones Promotoras Genéticas/genética
16.
J Bone Miner Res ; 31(2): 391-402, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26420353

RESUMEN

As the most well-studied histone acetyltransferase (HAT) in yeast and mammals, general control nonderepressible 5 (GCN5) was documented to play essential roles in various developmental processes. However, little is known about its role in osteogenic differentiation of mesenchymal stem cells (MSCs). Here, we detected the critical function of GCN5 in osteogenic commitment of MSCs. In this role, the HAT activity of GCN5 was not required. Mechanistically, GCN5 repressed nuclear factor kappa B (NF-κB)-dependent transcription and inhibited the NF-κB signaling pathway. The impaired osteogenic differentiation by GCN5 knockdown was blocked by inhibition of NF-κB. Most importantly, the expression of GCN5 was decreased significantly in the bone tissue sections of ovariectomized mice or aged mice. Collectively, these results may point to the GCN5-NF-κB pathway as a novel potential molecular target for stem cell mediated regenerative medicine and the treatment of metabolic bone diseases such as osteoporosis.


Asunto(s)
Diferenciación Celular , Células Madre Mesenquimatosas/metabolismo , FN-kappa B/metabolismo , Osteogénesis , Transducción de Señal , Factores de Transcripción p300-CBP/metabolismo , Animales , Femenino , Células HEK293 , Humanos , Ratones , Osteoporosis/metabolismo
17.
Sci Rep ; 6: 28897, 2016 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-27349231

RESUMEN

Bone marrow mesenchymal stem cells (BMSCs) exhibit an increased propensity toward adipocyte differentiation accompanied by a reduction in osteogenesis in osteoporotic bone marrow. However, limited knowledge is available concerning the role of long non-coding RNAs (lncRNAs) in the differentiation of BMSCs into adipocytes. In this study, we demonstrated that lncRNA H19 and microRNA-675 (miR-675) derived from H19 were significantly downregulated in BMSCs that were differentiating into adipocytes. Overexpression of H19 and miR-675 inhibited adipogenesis, while knockdown of their endogenous expression accelerated adipogenic differentiation. Mechanistically, we found that miR-675 targeted the 3' untranslated regions of the histone deacetylase (HDAC) 4-6 transcripts and resulted in deregulation of HDACs 4-6, essential molecules in adipogenesis. In turn, trichostatin A, an HDAC inhibitor, significantly reduced CCCTC-binding factor (CTCF) occupancy in the imprinting control region upstream of the H19 gene locus and subsequently downregulated the expression of H19. These results show that the CTCF/H19/miR-675/HDAC regulatory pathway plays an important role in the commitment of BMSCs into adipocytes.


Asunto(s)
Adipocitos/metabolismo , Diferenciación Celular/genética , Histona Desacetilasas/genética , Células Madre Mesenquimatosas/metabolismo , MicroARNs/genética , ARN Largo no Codificante/genética , Adipocitos/citología , Adipogénesis/genética , Secuencia de Bases , Células de la Médula Ósea/citología , Células de la Médula Ósea/metabolismo , Células Cultivadas , Epigénesis Genética , Expresión Génica , Células HEK293 , Histona Desacetilasas/metabolismo , Humanos , Células Madre Mesenquimatosas/citología , Interferencia de ARN , Homología de Secuencia de Ácido Nucleico
18.
Stem Cell Reports ; 7(2): 236-48, 2016 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-27453008

RESUMEN

MiR-34a was demonstrated to be upregulated during the osteogenic differentiation of human adipose-derived stem cells (hASCs). Overexpression of miR-34a significantly increased alkaline phosphatase activity, mineralization capacity, and the expression of osteogenesis-associated genes in hASCs in vitro. Enhanced heterotopic bone formation in vivo was also observed upon overexpression of miR-34a in hASCs. Mechanistic investigations revealed that miR-34a inhibited the expression of retinoblastoma binding protein 2 (RBP2) and reduced the luciferase activity of reporter gene construct comprising putative miR-34a binding sites in the 3' UTR of RBP2. Moreover, miR-34a downregulated the expression of NOTCH1 and CYCLIN D1 and upregulated the expression of RUNX2 by targeting RBP2, NOTCH1, and CYCLIN D1. Taken together, our results suggested that miR-34a promotes the osteogenic differentiation of hASCs via the RBP2/NOTCH1/CYCLIN D1 coregulatory network, indicating that miR-34a-targeted therapy could be a valuable approach to promote bone regeneration.


Asunto(s)
Tejido Adiposo/citología , Diferenciación Celular/genética , Ciclina D1/metabolismo , MicroARNs/metabolismo , Osteogénesis/genética , Receptores Notch/metabolismo , Proteínas Celulares de Unión al Retinol/metabolismo , Células Madre/citología , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Ciclina D1/genética , Regulación de la Expresión Génica , Redes Reguladoras de Genes , Humanos , MicroARNs/genética , Receptores Notch/genética , Proteínas Celulares de Unión al Retinol/genética , Células Madre/metabolismo
19.
Biomaterials ; 35(23): 6015-25, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24794925

RESUMEN

Human adipose-derived stem cells (hASCs) are a highly attractive source in bone tissue engineering. It has become increasingly clear that chromatin regulators play an important role in cell fate determination. However, how osteogenic differentiation of hASCs is controlled by epigenetic mechanisms is not fully understood. Here we use genetic tools and chemical inhibitors to modify the epigenetic program of hASCs and identify lysine-specific demethylase 1 (LSD1), a histone demethylase that specifically catalyzes demethylation of di- and mono- methyl histone H3 lysine 4 (H3K4me2/1), as a key regulator in osteogenic differentiation of hASCs. Specifically, we demonstrated that genetic depletion of LSD1 with lentiviral strategy for gene knockdown promoted osteogenic differentiation of hASCs by cell studies and xenograft assays. At the molecular level, we found that LSD1 regulates osteogenesis-associated genes expression through its histone demethylase activity. Significantly, we demonstrated LSD1 demethylase inhibitors could efficiently block its catalytic activity and epigenetically boost osteogenic differentiation of hASCs. Altogether, our study defined the functional and biological roles of LSD1 and extensively explored the effects of its enzymatic activity in osteogenic differentiation of hASCs. A better understanding of how LSD1 influences on osteogenesis associated epigenetic events will provide new insights into the modulation of hASCs based cell therapy and improve the development of bone tissue engineering with epigenetic intervention.


Asunto(s)
Adipocitos/citología , Histona Demetilasas/química , Histona Demetilasas/genética , Osteoblastos/citología , Osteoblastos/fisiología , Células Madre/citología , Células Madre/fisiología , Adipocitos/fisiología , Animales , Diferenciación Celular/genética , Células Cultivadas , Epigénesis Genética/fisiología , Mejoramiento Genético/métodos , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Osteogénesis/genética , Andamios del Tejido
20.
Biomaterials ; 35(15): 4489-98, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24589359

RESUMEN

The purpose of this study was to investigate the cooperative effects of simvastatin (SIM) and stromal cell-derived factor-1α (SDF-1α) on the osteogenic and migration capabilities of mesenchymal stem cells (MSCs), and construct a cell-free bone tissue engineering system comprising SIM, SDF-1α and scaffold. We found that 0.2 µm SIM significantly increased alkaline phosphatase activity (P < 0.05) of mouse bone marrow MSCs with no inhibition of cell proliferation, and enhanced the chemotactic capability of SDF-1α (P < 0.05). Next, we constructed a novel cell-free bone tissue engineering system using PLGA loaded with SIM and SDF-1α, and applied it in critical-sized calvarial defects in mice. New bone formation in the defect was evaluated by micro-CT, HE staining and immunohistochemistry. The results showed that PLGA loaded with SIM and SDF-1α promoted bone regeneration significantly more than controls. We investigated possible mechanisms, and showed that SDF-1α combined with SIM increased MSC migration and homing in vivo, promoted angiogenesis and enhanced the expression of BMP-2 in newly-formed bone tissue. In conclusion, SIM enhanced the chemotactic capability of SDF-1α and the cell-free bone tissue engineering system composed of SIM, SDF-1α and scaffold promoted bone regeneration in mouse critical-sized calvarial defects.


Asunto(s)
Regeneración Ósea/efectos de los fármacos , Quimiocina CXCL12/uso terapéutico , Inhibidores de Hidroximetilglutaril-CoA Reductasas/uso terapéutico , Simvastatina/uso terapéutico , Cráneo/lesiones , Ingeniería de Tejidos/métodos , Fosfatasa Alcalina/metabolismo , Animales , Células de la Médula Ósea/citología , Células de la Médula Ósea/efectos de los fármacos , Células de la Médula Ósea/metabolismo , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Quimiocina CXCL12/administración & dosificación , Inhibidores de Hidroximetilglutaril-CoA Reductasas/administración & dosificación , Masculino , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Ratones , Simvastatina/administración & dosificación , Cráneo/efectos de los fármacos , Cráneo/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA