Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Nature ; 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39038490

RESUMEN

In dynamic environments, animals make behavioral decisions based on the innate valences of sensory cues and information learnt about these cues across multiple timescales1-3. However, it remains unclear how the innate valence of a sensory stimulus affects acquisition of learnt valence information and subsequent memory dynamics. Here we show that in the Drosophila brain, interconnected short- and long-term memory units of the mushroom body jointly regulate memory via dopamine signals that encode innate and learnt sensory valences. Through time-lapse, in vivo voltage-imaging studies of neural spiking in >500 flies undergoing olfactory associative conditioning, we found that protocerebral posterior lateral 1 dopamine neurons (PPL1-DANs)4 heterogeneously and bi-directionally encode innate and learnt valences of punishment, reward, and odor cues. During learning, these valence signals regulate memory storage and extinction in mushroom body output neurons (MBONs)5. In initial conditioning bouts, PPL1-γ1pedc and PPL1-γ2α'1 neurons control short-term memory formation, which weakens inhibitory feedback from MBON-γ1pedc>α/ß to PPL1-α'2α2 and PPL1-α3. During further conditioning, this diminished feedback allows these two PPL1-DANs to encode the net innate plus learnt valence of the conditioned odor cue, which gates long-term memory formation. A computational model constrained by the fly connectome6,7 and our spiking data explains how dopamine signals mediate the circuit interactions between short- and long-term memory traces, yielding predictions that our experiments confirm. Overall, the mushroom body achieves flexible learning via the integration of innate and learnt valences within parallel learning units sharing feedback interconnections. This hybrid physiologic-anatomic mechanism may be a general means by which dopamine regulates memory dynamics in other species and brain structures, including the vertebrate basal ganglia.

2.
Nat Methods ; 15(12): 1108-1116, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30420685

RESUMEN

Genetically encoded voltage indicators (GEVIs) are emerging optical tools for acquiring brain-wide cell-type-specific functional data at unparalleled temporal resolution. To broaden the application of GEVIs in high-speed multispectral imaging, we used a high-throughput strategy to develop voltage-activated red neuronal activity monitor (VARNAM), a fusion of the fast Acetabularia opsin and the bright red fluorophore mRuby3. Imageable under the modest illumination intensities required by bright green probes (<50 mW mm-2), VARNAM is readily usable in vivo. VARNAM can be combined with blue-shifted optical tools to enable cell-type-specific all-optical electrophysiology and dual-color spike imaging in acute brain slices and live Drosophila. With enhanced sensitivity to subthreshold voltages, VARNAM resolves postsynaptic potentials in slices and cortical and hippocampal rhythms in freely behaving mice. Together, VARNAM lends a new hue to the optical toolbox, opening the door to high-speed in vivo multispectral functional imaging.


Asunto(s)
Potenciales de Acción , Encéfalo/fisiología , Drosophila melanogaster/metabolismo , Colorantes Fluorescentes/química , Procesamiento de Imagen Asistido por Computador/métodos , Proteínas Luminiscentes/metabolismo , Microscopía Fluorescente/métodos , Animales , Encéfalo/citología , Células Cultivadas , Fenómenos Electrofisiológicos , Femenino , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/citología , Neuronas/fisiología , Optogenética , Proteína Fluorescente Roja
3.
J Neurosci ; 36(22): 5914-9, 2016 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-27251614

RESUMEN

UNLABELLED: The role of GABAergic signaling in establishing a critical period for experience in visual cortex is well understood. However, the effects of early experience on GABAergic synapses themselves are less clear. Here, we show that monocular deprivation (MD) during the adolescent critical period produces marked enhancement of GABAergic signaling in layer 2/3 of mouse monocular visual cortex. This enhancement coincides with a weakening of glutamatergic inputs, resulting in a significant reduction in the ratio of excitation to inhibition. The potentiation of GABAergic transmission arises from both an increased number of inhibitory synapses and an enhancement of presynaptic GABA release from parvalbumin- and somatostatin-expressing interneurons. Our results suggest that augmented GABAergic inhibition contributes to the experience-dependent regulation of visual function. SIGNIFICANCE STATEMENT: Visual experience shapes the synaptic organization of cortical circuits in the mouse brain. Here, we show that monocular visual deprivation enhances GABAergic synaptic inhibition in primary visual cortex. This enhancement is mediated by an increase in both the number of postsynaptic GABAergic synapses and the probability of presynaptic GABA release. Our results suggest a contributing mechanism to altered visual responses after deprivation.


Asunto(s)
Neuronas GABAérgicas/fisiología , Inhibición Neural/fisiología , Privación Sensorial/fisiología , Sinapsis/fisiología , Corteza Visual/citología , Vías Visuales/fisiología , Factores de Edad , Animales , Animales Recién Nacidos , Channelrhodopsins , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Femenino , Lateralidad Funcional , Técnicas In Vitro , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Inhibición Neural/genética , Parvalbúminas/genética , Parvalbúminas/metabolismo , Técnicas de Placa-Clamp , Sinapsis/efectos de los fármacos , Sinapsis/genética , Potenciales Sinápticos/efectos de los fármacos , Potenciales Sinápticos/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Corteza Visual/crecimiento & desarrollo
4.
J Neurosci ; 35(23): 8701-17, 2015 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-26063905

RESUMEN

The cerebellum is crucial for sensorimotor coordination. The cerebellar architecture not only requires proper development but also long-term integrity to ensure accurate functioning. Developmental defects such as impaired neuronal migration or neurodegeneration are thus detrimental to the cerebellum and can result in movement disorders including ataxias. In this study, we identify FBXO41 as a novel CNS-specific F-box protein that localizes to the centrosome and the cytoplasm of neurons and demonstrate that cytoplasmic FBXO41 promotes neuronal migration. Interestingly, deletion of the FBXO41 gene results in a severely ataxic gait in mice, which show delayed neuronal migration of granule neurons in the developing cerebellum in addition to deformities and degeneration of the mature cerebellum. We show that FBXO41 is a critical factor, not only for neuronal migration in the cerebellum, but also for its long-term integrity.


Asunto(s)
Encéfalo/patología , Movimiento Celular/genética , Proteínas F-Box/metabolismo , Regulación del Desarrollo de la Expresión Génica/genética , Neuronas/patología , Ataxias Espinocerebelosas/genética , Ataxias Espinocerebelosas/patología , Animales , Animales Recién Nacidos , Supervivencia Celular/genética , Células Cultivadas , Modelos Animales de Enfermedad , Embrión de Mamíferos , Proteínas F-Box/genética , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Ratones , Ratones Transgénicos , Mutación/genética , Proteínas del Tejido Nervioso/metabolismo , Neuroglía/metabolismo , Neuronas/metabolismo , Fenotipo , Fracciones Subcelulares/metabolismo
5.
Development ; 139(19): 3600-12, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22949615

RESUMEN

Axon growth is an essential event during brain development and is extremely limited due to extrinsic and intrinsic inhibition in the adult brain. The E3 ubiquitin ligase Cdh1-anaphase promoting complex (APC) has emerged as an important intrinsic suppressor of axon growth. In this study, we identify in rodents the E3 ligase Smurf1 as a novel substrate of Cdh1-APC and that Cdh1 targets Smurf1 for degradation in a destruction box-dependent manner. We find that Smurf1 acts downstream of Cdh1-APC in axon growth and that the turnover of RhoA by Smurf1 is important in this process. In addition, we demonstrate that acute knockdown of Smurf1 in vivo in the developing cerebellar cortex results in impaired axonal growth and migration. Finally, we show that a stabilized form of Smurf1 overrides the inhibition of axon growth by myelin. Taken together, we uncovered a Cdh1-APC/Smurf1/RhoA pathway that mediates axonal growth suppression in the developing mammalian brain.


Asunto(s)
Axones/fisiología , Complejos de Ubiquitina-Proteína Ligasa/fisiología , Ubiquitina-Proteína Ligasas/fisiología , Ciclosoma-Complejo Promotor de la Anafase , Animales , Animales Recién Nacidos , Axones/metabolismo , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Células Cultivadas , Células HEK293 , Humanos , Neurogénesis/genética , Neurogénesis/fisiología , Ratas , Ratas Wistar , Transducción de Señal/genética , Transducción de Señal/fisiología , Complejos de Ubiquitina-Proteína Ligasa/genética , Complejos de Ubiquitina-Proteína Ligasa/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Proteína de Unión al GTP rhoA/genética , Proteína de Unión al GTP rhoA/metabolismo , Proteína de Unión al GTP rhoA/fisiología
6.
bioRxiv ; 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39185175

RESUMEN

Fluorescent genetically encoded voltage indicators report transmembrane potentials of targeted cell-types. However, voltage-imaging instrumentation has lacked the sensitivity to track spontaneous or evoked high-frequency voltage oscillations in neural populations. Here we describe two complementary TEMPO voltage-sensing technologies that capture neural oscillations up to ~100 Hz. Fiber-optic TEMPO achieves ~10-fold greater sensitivity than prior photometry systems, allows hour-long recordings, and monitors two neuron-classes per fiber-optic probe in freely moving mice. With it, we uncovered cross-frequency-coupled theta- and gamma-range oscillations and characterized excitatory-inhibitory neural dynamics during hippocampal ripples and visual cortical processing. The TEMPO mesoscope images voltage activity in two cell-classes across a ~8-mm-wide field-of-view in head-fixed animals. In awake mice, it revealed sensory-evoked excitatory-inhibitory neural interactions and traveling gamma and 3-7 Hz waves in the visual cortex, and previously unreported propagation directions for hippocampal theta and beta waves. These technologies have widespread applications probing diverse oscillations and neuron-type interactions in healthy and diseased brains.

7.
Science ; 378(6619): eabm8797, 2022 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-36378956

RESUMEN

Genetically encoded fluorescent voltage indicators are ideally suited to reveal the millisecond-scale interactions among and between targeted cell populations. However, current indicators lack the requisite sensitivity for in vivo multipopulation imaging. We describe next-generation green and red voltage sensors, Ace-mNeon2 and VARNAM2, and their reverse response-polarity variants pAce and pAceR. Our indicators enable 0.4- to 1-kilohertz voltage recordings from >50 spiking neurons per field of view in awake mice and ~30-minute continuous imaging in flies. Using dual-polarity multiplexed imaging, we uncovered brain state-dependent antagonism between neocortical somatostatin-expressing (SST+) and vasoactive intestinal peptide-expressing (VIP+) interneurons and contributions to hippocampal field potentials from cell ensembles with distinct axonal projections. By combining three mutually compatible indicators, we performed simultaneous triple-population imaging. These approaches will empower investigations of the dynamic interplay between neuronal subclasses at single-spike resolution.


Asunto(s)
Potenciales de Acción , Hipocampo , Imagen Molecular , Neuronas , Corteza Visual , Animales , Ratones , Potenciales de Acción/fisiología , Hipocampo/citología , Hipocampo/fisiología , Interneuronas/fisiología , Neuronas/clasificación , Neuronas/fisiología , Péptido Intestinal Vasoactivo/metabolismo , Imagen Molecular/métodos , Rodopsina/química , Rodopsina/genética , Proteínas Luminiscentes/química , Proteínas Luminiscentes/genética , Corteza Visual/citología , Corteza Visual/fisiología , Fluorescencia , Mediciones Luminiscentes
8.
Front Cell Neurosci ; 13: 53, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30863283

RESUMEN

Genetically encoded optical indicators of neuronal activity enable unambiguous recordings of input-output activity patterns from identified cells in intact circuits. Among them, genetically encoded voltage indicators (GEVIs) offer additional advantages over calcium indicators as they are direct sensors of membrane potential and can adeptly report subthreshold events and hyperpolarization. Here, we outline the major GEVI designs and give an account of properties that need to be carefully optimized during indicator engineering. While designing the ideal GEVI, one should keep in mind aspects such as membrane localization, signal size, signal-to-noise ratio, kinetics and voltage dependence of optical responses. Using ArcLight and derivatives as prototypes, we delineate how a probe should be optimized for the former properties and developed along other areas in a need-based manner. Finally, we present an overview of the GEVI engineering process and lend an insight into their discovery, delivery and diagnosis.

9.
PLoS One ; 7(11): e50735, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23226367

RESUMEN

Axon growth is an essential process during brain development. The E3 ubiquitin ligase Cdh1-APC has emerged as a critical regulator of intrinsic axon growth control. Here, we identified the RhoGAP p250GAP as a novel interactor of the E3 ubiquitin ligase Cdh1-APC and found that p250GAP promotes axon growth downstream of Cdh1-APC. We also report that p250GAP undergoes non-proteolytic ubiquitination and associates with the Cdh1 substrate Smurf1 to synergistically regulate axon growth. Finally, we found that in vivo knockdown of p250GAP in the developing cerebellar cortex results in impaired migration and axonal growth. Taken together, our data indicate that Cdh1-APC together with the RhoA regulators p250GAP and Smurf1 controls axon growth in the mammalian brain.


Asunto(s)
Proteína de la Poliposis Adenomatosa del Colon/metabolismo , Axones/metabolismo , Cadherinas/metabolismo , Proteínas Activadoras de GTPasa/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Antígenos CD , Movimiento Celular , Cerebelo/citología , Cerebelo/crecimiento & desarrollo , Cerebelo/metabolismo , Células HEK293 , Humanos , Ratones , Ratas , Ubiquitinación
10.
Neurobiol Aging ; 31(9): 1543-53, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18951667

RESUMEN

The therapeutic use of statins in reducing cholesterol requires careful assessment of potential neuroprotective and/or neurotoxic mechanisms. Chronic treatment with mevastatin (MV) exerts effects on cortical neuron morphology, protein expression and synaptic function in primary culture. MV impaired expression of synaptic proteins, reduced N-methyl-d-aspartate receptor (NMDAR) currents and accelerated neurodegeneration associated with aging. The down-regulating effect of MV on neuronal protein expression was additive with aging-associated decline in culture. Induction of Heme oxygenase-1 (HMOX1) by MV was superimposed on age-related up-regulation. Comparison of MV-treated and heme-deficient neurons showed that inhibition of heme synthesis (by succinyl acetone) had similar damaging effect on neurite integrity and MNDAR expression and function but not on expression of the receptor for neuropeptide Y1 (NPY1R). Replacement of heme in heme-deficient cultures restored protein expression but had no effect in those cultures co-treated with MV. Despite the dramatic induction of HMOX1, intracellular heme remained sufficient in MV-treated cultures, consistent with a heme-independent mechanism of MV-induced neurotoxicity and this was confirmed by analysing neurons with lentiviral over-expression of HMOX1. We conclude that MV exerts a neurotoxic effect in cultured neurons in a heme-independent manner.


Asunto(s)
Envejecimiento/fisiología , Corteza Cerebral/fisiología , Hemoproteínas/metabolismo , Lovastatina/análogos & derivados , Proteínas del Tejido Nervioso/metabolismo , Neuritas/fisiología , Sinapsis/fisiología , Envejecimiento/efectos de los fármacos , Animales , Anticolesterolemiantes/administración & dosificación , Apoptosis/efectos de los fármacos , Células Cultivadas , Corteza Cerebral/efectos de los fármacos , Femenino , Lovastatina/farmacología , Masculino , Ratones , Ratones Endogámicos BALB C , Neuritas/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Sinapsis/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA