Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Oral Implantol ; 41(1): 37-44, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23418913

RESUMEN

Dental implant-abutment connection design has developed into the use of a conical, shank and socket connection between the implant abutment and fixture. The connection between these two elements is, in effect, a conical wedge that may exert lateral forces under load that may result in fracture of the coronal implant socket fixture walls. This study evaluated the axial loading on a conical connection and found that axial loads were well tolerated but off-axial loads were not. Fracture of the implant coronal socket fixture wall occurred under off-axial loading.


Asunto(s)
Diseño de Implante Dental-Pilar , Fracaso de la Restauración Dental , Algoritmos , Aleaciones , Fuerza de la Mordida , Aleaciones Dentales/química , Análisis del Estrés Dental/instrumentación , Análisis de Elementos Finitos , Humanos , Ensayo de Materiales , Modelos Teóricos , Estrés Mecánico , Propiedades de Superficie , Titanio/química
2.
Sci Adv ; 9(24): eadg6075, 2023 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-37315129

RESUMEN

Amino acid crystals are an attractive piezoelectric material as they have an ultrahigh piezoelectric coefficient and have an appealing safety profile for medical implant applications. Unfortunately, solvent-cast films made from glycine crystals are brittle, quickly dissolve in body fluid, and lack crystal orientation control, reducing the overall piezoelectric effect. Here, we present a material processing strategy to create biodegradable, flexible, and piezoelectric nanofibers of glycine crystals embedded inside polycaprolactone (PCL). The glycine-PCL nanofiber film exhibits stable piezoelectric performance with a high ultrasound output of 334 kPa [under 0.15 voltage root-mean-square (Vrms)], which outperforms the state-of-the-art biodegradable transducers. We use this material to fabricate a biodegradable ultrasound transducer for facilitating the delivery of chemotherapeutic drug to the brain. The device remarkably enhances the animal survival time (twofold) in mice-bearing orthotopic glioblastoma models. The piezoelectric glycine-PCL presented here could offer an excellent platform not only for glioblastoma therapy but also for developing medical implantation fields.


Asunto(s)
Glioblastoma , Nanofibras , Animales , Ratones , Aminoácidos , Glicina , Encéfalo
3.
Protein Eng ; 16(10): 717-20, 2003 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-14600200

RESUMEN

The reduction of the computational complexity of the algorithms dealing with protein structure analysis and conformation predictions is of prime importance. One common element in most of these algorithms is the process of transforming geometrical information between dihedral angles and Cartesian coordinates of the atoms in the protein using rotational operators. In the literature, the operators used in protein structures are rotation matrices, quaternions in vector and matrix forms and the Rodrigues-Gibbs formula. In the protein structure-related literature, the most widely promoted rotational operator is the quaternions operator. In this work, we studied the computational efficiency of the mathematical operations of the above rotational operators applied to protein structures. A similar study applied to protein structures has not been reported previously. We concluded that the computational efficiency of these rotational operators applied to protein chains is different from those reported for other applications (such as mechanical machinery) and the conclusions are not analogous. Rotation matrices are the most efficient mathematical operators in the protein chains. We examined our findings in two protein molecules: Ab1 tyrosine kinase and heparin-binding growth factor 2. We found that the rotation matrix operator has between 2 and 187% fewer mathematical operations than the other rotational operators.


Asunto(s)
Simulación por Computador , Proteínas/química , Factor 2 de Crecimiento de Fibroblastos/química , Modelos Químicos , Conformación Proteica , Proteínas Proto-Oncogénicas c-abl/química , Rotación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA