Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
J Hepatol ; 65(2): 325-33, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27117591

RESUMEN

BACKGROUND & AIMS: Pediatric liver cancer is a rare but serious disease whose incidence is rising, and for which the therapeutic options are limited. Development of more targeted, less toxic therapies is hindered by the lack of an experimental animal model that captures the heterogeneity and metastatic capability of these tumors. METHODS: Here we established an orthotopic engraftment technique to model a series of patient-derived tumor xenograft (PDTX) from pediatric liver cancers of all major histologic subtypes: hepatoblastoma, hepatocellular cancer and hepatocellular malignant neoplasm. We utilized standard (immuno) staining methods for histological characterization, RNA sequencing for gene expression profiling and genome sequencing for identification of druggable targets. We also adapted stem cell culturing techniques to derive two new pediatric cancer cell lines from the xenografted mice. RESULTS: The patient-derived tumor xenografts recapitulated the histologic, genetic, and biological characteristics-including the metastatic behavior-of the corresponding primary tumors. Furthermore, the gene expression profiles of the two new liver cancer cell lines closely resemble those of the primary tumors. Targeted therapy of PDTX from an aggressive hepatocellular malignant neoplasm with the MEK1 inhibitor trametinib and pan-class I PI3 kinase inhibitor NVP-BKM120 resulted in significant growth inhibition, thus confirming this PDTX model as a valuable tool to study tumor biology and patient-specific therapeutic responses. CONCLUSIONS: The novel metastatic xenograft model and the isogenic xenograft-derived cell lines described in this study provide reliable tools for developing mutation- and patient-specific therapies for pediatric liver cancer. LAY SUMMARY: Pediatric liver cancer is a rare but serious disease and no experimental animal model currently captures the complexity and metastatic capability of these tumors. We have established a novel animal model using human tumor tissue that recapitulates the genetic and biological characteristics of this cancer. We demonstrate that our patient-derived animal model, as well as two new cell lines, are useful tools for experimental therapies.


Asunto(s)
Neoplasias Hepáticas , Animales , Carcinoma Hepatocelular , Línea Celular Tumoral , Niño , Modelos Animales de Enfermedad , Xenoinjertos , Humanos , Ratones , Trasplante de Neoplasias , Ensayos Antitumor por Modelo de Xenoinjerto
2.
Cancer Immunol Res ; 11(4): 486-500, 2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-36700864

RESUMEN

Diverse factors contribute to the limited clinical response to radiotherapy (RT) and immunotherapy in metastatic non-small cell lung cancer (NSCLC), among which is the ability of these tumors to recruit a retinue of suppressive immune cells-such as M2 tumor-associated macrophages (TAM)-thereby establishing an immunosuppressive tumor microenvironment that contributes to tumor progression and radio resistance. M2 TAMs are activated by the STAT6 signaling pathway. Therefore, we targeted STAT6 using an antisense oligonucleotide (ASO) along with hypofractionated RT (hRT; 3 fractions of 12 Gy each) to primary tumors in three bilateral murine NSCLC models (Lewis lung carcinoma, 344SQ-parental, and anti-PD-1-resistant 344SQ lung adenocarcinomas). We found that STAT6 ASO plus hRT slowed growth of both primary and abscopal tumors, decreased lung metastases, and extended survival. Interrogating the mechanism of action showed reduced M2 macrophage tumor infiltration, enhanced TH1 polarization, improved T-cell and macrophage function, and decreased TGFß levels. The addition of anti-PD-1 further enhanced systemic antitumor responses. These results provide a preclinical rationale for the pursuit of an alternative therapeutic approach for patients with immune-resistant NSCLC.


Asunto(s)
Carcinoma Pulmonar de Lewis , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Ratones , Animales , Carcinoma de Pulmón de Células no Pequeñas/radioterapia , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/tratamiento farmacológico , Oligonucleótidos Antisentido/farmacología , Oligonucleótidos Antisentido/uso terapéutico , Oligonucleótidos Antisentido/metabolismo , Macrófagos , Carcinoma Pulmonar de Lewis/patología , Microambiente Tumoral , Factor de Transcripción STAT6/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA