Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Small ; 20(3): e2304784, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37699758

RESUMEN

Twins in crystal defect, one of the significant factors affecting the physicochemical properties of semiconductor materials, are applied in catalytic conversion. Among the catalysts serving for photocatalytic water splitting, Zn1- x Cdx S has become a hot-point due to its adjustable energy band structure. Via limiting mass transport to control the release rate of anions/cations, twin Zn1- x Cdx S solid solution is prepared successfully, which lays a foundation for the construction of other twin crystals in the future. On twin Zn1- x Cdx S, water tends to be dissociated after being adsorbed by Zn2+ /Cd2+ at twin boundary, then the fast-moving electrons at twin boundary quickly combine with the protons already attached to S2- to form hydrogen. According to the theoretical calculation, not only the intracrystalline electron mobility, but also the extracrystalline capacity of water-adsorption/dissociation and proton-adsorption on the twin boundary are superior to those of the counterpart plane in defect-free phase. The synthetic twin Zn1- x Cdx S apparent quantum efficiency of photocatalysis water splitting for hydrogen reached 82.5% (λ = 420 nm). This research opens up an avenue to introduce twins in crystals and it hopes to shed some light on photocatalysis.

2.
Small ; : e2404194, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39136198

RESUMEN

Conversion and alloying-type transitional metal sulfides have attracted significant interests as anodes for Potassium-ion batteries (PIBs) and Sodium-ion batteries (SIBs) due to their high theoretical capacities and low cost. However, the poor conductivity, structural pulverization, and high-volume expansions greatly limit the performance. Herein, Co1-xS/ZnS hollow nanocube-like heterostructure decorated on reduced graphene oxide (Co1-xS/ZnS@rGO) composite is fabricated through convenient hydrothermal and post-heat vulcanization techniques. This unique composite can provide a more stable conductive network and shorten the diffusion length of ions, which exhibits a remarkable initial charge capacity of 638.5 mA h g-1 at 0.1 A g-1 for SIBs and 606 mA h g-1 at 0.1 A g-1 for PIBs, respectively; It is worth noting that the composite presents remarkable long stable cycle performance in PIBs, which initially delivered 274 mA h g-1 and sustained the charge capacity up to 245 mA h g-1 at high current density of 1 A g-1 after 2000 cycles. A series of in situ/ex situ detections and first principle calculations further validate the high potassium ions adsorption ability of Co1-xS/ZnS anode materials with high diffusion kinetics. This work will accelerate the fundamental construction of bimetallic sulfide hollow nanocubes heterostructure electrodes for energy storage applications.

3.
Small ; : e2404193, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39189537

RESUMEN

2D transitional metal selenide heterostructures are promising electrode materials for potassium-ion batteries (PIBs) owing to the large surface area, high mechanical strength, and short diffusion pathways. However, the cycling performance remains a significant challenge, particularly concerning the electrochemical conversion reaction. Herein, 2D Se-rich ZnSe/CoSe2@C heterostructured composite is fabricated via a convenient hydrothermal approach followed by selenization process, and then applied as high-performance anodes for PIBs. For example, the capacity delivered by the heterostructured composite is mainly contributed to the synergistic effect of conversion and alloy/de-alloy processes aroused by K+, where K+ may highly insert or de-insert into Se-rich ZnSe/CoSe2@C. The obtained electrode delivers an outstanding reversible charge capacity of 214 mA h g-1 at 1 A g-1 after 4000 cycles for PIBs, and achieves 262 mAh g-1 when coupled with a PTCDA cathode in the full cell. The electrochemical conversion mechanism of the optimized electrode during cycling is investigated through in situ XRD, Raman, and ex situ HRTEM. In addition, the heterostructured composite as anodes also displays excellent electrochemical performances for sodium-ion batteries (SIBs) and lithium-ion batteries (LIBs). This work opens up a new window for investigating novel electrode materials with excellent capacity and long durability.

4.
Nano Lett ; 23(13): 6216-6225, 2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37341290

RESUMEN

It remains a challenge to artificially fabricate fibers with the macroscopic mechanical properties and characteristics of spider silk. Herein, a covalently cross-linked double-network strategy was proposed to disrupt the inverse relation of strength and toughness in the fabrication of ultratough and superstrong artificial polymer fibers. Our design utilized a strong fishnet-like structure based on immovable cellulose nanocrystal cross-links to mimic the function of the ß-sheet nanocrystallites and a slidable mechanically interlocked network based on polyrotaxane to imitate the dissipative stick-slip motion of the ß-strands in spider silk. The resultant fiber exhibited superior mechanical properties, including gigapascal tensile strength, a ductility of over 60%, and a toughness exceeding 420 MJ/m3. The fibers also showed robust biological functions similar to those of spider silks, demonstrating mechanical enhancement, energy absorption ability, and shape memory. A composite with our artificial fibers as reinforcing fibers exhibited remarkable tear and fatigue resistance.

5.
BMC Cardiovasc Disord ; 23(1): 189, 2023 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-37038117

RESUMEN

The main manifestations of Takotsubo syndrome (TTS) are a spherical expansion of the left ventricle or near the apex and decreased systolic function. TTS is mostly thought to be induced by emotional stress, and the induction of TTS by severe infection is not often reported. A 72-year-old female patient with liver abscess reported herein was admitted due to repeated fever with a history of hypertension and impaired glucose tolerance. Her severe infection caused TTS, and her blood pressure dropped to 80/40 mmHg. IABP treatment was performed immediately and continued for 10 days, and comprehensive medication was administered. Based on her disease course and her smooth recovery, general insights and learnings may be: Adding to mental and other pathological stress reaction, serious infections from pathogenic microorganism could be of great important causation of stress reaction leading to TTS, while basic diseases such as coronary heart disease, hypertension, and diabetes were be of promoting factors; In addition to effective drug therapies for TTS, the importance of the timely using of IABP should be emphasized.


Asunto(s)
Hipertensión , Absceso Hepático , Cardiomiopatía de Takotsubo , Humanos , Femenino , Anciano , Cardiomiopatía de Takotsubo/complicaciones , Cardiomiopatía de Takotsubo/diagnóstico por imagen , Cardiomiopatía de Takotsubo/tratamiento farmacológico , Hipertensión/complicaciones , Hipertensión/diagnóstico , Hipertensión/tratamiento farmacológico , Absceso Hepático/complicaciones
6.
J Orthop Sci ; 2023 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-37407345

RESUMEN

OBJECTIVE: This study aimed to analyze the stress and strain changes of the anterior cruciate ligament (ACL) at different knee flexion angles using a three-dimensional finite element model. METHODS: Computed tomography and magnetic resonance imaging scans were performed on the right knee of 30 healthy adult volunteers. The imaging data were used to construct a three-dimensional finite element model of the knee joint. The magnitude and concentration area of stress and strain of ACL at knee flexion angles 0°, 30°, 60° and 90° were assessed. RESULTS: The magnitude of stress remained consistent at 0-30° (P > 0.999) and decreased at 30-90° (P < 0.001, P = 0.005, respectively), while the magnitude of strain increased between 0° and 30° (P = 0.004) and decreased between 30° and 90° (P < 0.001, P = 0.004, respectively). The stress concentration area remained consistent at the proximal end, midsubstance, and distal end between 0° and 60° (P > 0.05). The concentration area of strain increased at the proximal end, decreased at the midsubstance between 0° and 30°, and remained consistent between 30° and 90° (P < 0.001). CONCLUSION: At the low knee flexion angle, ACL's magnitude of stress and strain reached the peak, and the concentration area of ACL strain gradually shifted from midsubstance to the proximal end.

7.
Small ; 18(15): e2107252, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35224841

RESUMEN

Suitable anode materials with high capacity and long cycling stability, especially capability at high current densities, are urgently needed to advance the development of potassium ion batteries (PIBs) and sodium ion batteries (SIBs). Herein, a porous Ni-doped FeSe2 /Fe3 Se4 heterojunction encapsulated in Se-doped carbon (NF11 S/C) is designed through selenization of MOFs precursor. The porous composite possesses enriched active sites and facilitates transport for both ion and electron. Ni-doping is adopted to enrich the lattice defects and active sites. The Se-C bond and carbon framework endow integrity of the composite and hamper aggregation of selenide nano-particles during potassiation/de-potassiation. The NF11 S/C exhibits exceptional rate performance and ultra-long cycling stability (177.3 mA h g-1 after 3050 cycles at 2 A g-1 for PIBs and 208.8 mA h g-1 after 2000 cycles at 8 A g-1 for SIBs). The potassiation/de-potassiation mechanism is investigated via ex-situ X-ray powder diffraction, high-resolution transmission electron microscopy, X-ray photoelectron spectrocopy and Raman analysis. PTCDA//NF11 S/C full cell stably cycles for 1200 cycles at 200 mA g-1 with a capacity of 103.7 mA h g-1 , indicating the high application potential of the electrode for highly stable rechargeable batteries.

8.
Langmuir ; 38(28): 8657-8666, 2022 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-35796103

RESUMEN

Rational design of electrode materials with an excellent structure and morphology is crucial for improving electrochemical properties. Herein, various unique nanostructured Bi2S3 materials with controllable morphology were obtained through a simple and efficient oil bath reaction strategy. Bi2S3 with different morphologies can be obtained by regulating the polarity of solvent, and the lattice spacing can also be adjusted. The Bi2S3 nanomaterials obtained with ethanol as solvent (BS-3) show a three-dimensional nanoflower-like structure assembled with porous layers. The unique structure facilitates the transport of ions and accommodates the volume variation of Bi2S3 during energy storage. Consequently, BS-3 nanoflowers exhibited superior cycling stability and excellent high-rate capability for lithium storage (maintained a high capacity of 923.8 mA h g-1 after 950 cycles at 1.0 A g-1) and excellent sodium storage. We provide guidance for precise synthesis and energy storage application of Bi2S3 nanomaterials.

9.
Sensors (Basel) ; 20(8)2020 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-32295136

RESUMEN

Today, as media and technology multitasking becomes pervasive, the majority of young people face a challenge regarding their attentional engagement (that is, how well their attention can be maintained). While various approaches to improve attentional engagement exist, it is difficult to produce an effect in younger people, due to the inadequate attraction of these approaches themselves. Here, we show that a single 30-min engagement with an attention restoration theory (ART)-inspired closed-loop software program (Virtual ART) delivered on a consumer-friendly virtual reality head-mounted display (VR-HMD) could lead to improvements in both general attention level and the depth of engagement in young university students. These improvements were associated with positive changes in both behavioral (response time and response time variability) and key electroencephalography (EEG)-based neural metrics (frontal midline theta inter-trial coherence and parietal event-related potential P3b). All the results were based on the comparison of the standard Virtual ART tasks (control group, n = 15) and closed-loop Virtual ART tasks (treatment group, n = 15). This study provides the first case of EEG evidence of a VR-HMD-based closed-loop ART intervention generating enhanced attentional engagement.


Asunto(s)
Atención/fisiología , Ansiedad/patología , Electroencefalografía , Femenino , Humanos , Masculino , Programas Informáticos , Realidad Virtual , Adulto Joven
10.
J Nanosci Nanotechnol ; 19(2): 850-858, 2019 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-30360162

RESUMEN

Tin dioxide (SnO2), with a high theoretical storage capacity of 782 mAhg-1, is a potential alternative anode for rechargeable lithium ion batteries (LIBs). However, its low electronic conductivity and poor stability during cycling (due to a change in volume) hinder its practical applications for energy storage. Composite materials of SnO2-nanocrystal-decorated graphene, which show excellent electrochemical characteristics, were prepared using a one-pot elevated hydrothermal method at 250 °C without subsequent carbonization treatment. The effects of graphene, solvent composition, and temperature on the morphology, structure, and electrochemical properties of the SnO2/graphene composites were investigated using XRD, SEM, TEM, and N2 adsorption-desorption techniques. The as-prepared SnO2/graphene composites deliver a high initial discharge capacity of 1734.1 mAh g-1 at 200 mA g-1 and exhibit a high reversible capacity of 814.7 mAh g-1 even after 70 cycles at a current density of 200 mA g-1. The composites also exhibit a high rate capability of 596 mAh g-1 at 2000 mAg-1, indicating a long cycle life and promising capability when used as anode materials for lithium ion batteries and suggesting that SnO2/graphene composites have wide application prospects in LIBs.

11.
Yao Xue Xue Bao ; 50(5): 565-8, 2015 May.
Artículo en Zh | MEDLINE | ID: mdl-26234137

RESUMEN

The PET tracer 5-([11C]methyloxy)-L-tryptophan (5-(11)CMTP) was prepared by nucleophilic fluorination and alkylation reaction via a two-step procedure in order to develop specific tumor probe. The biodistribution and microPET imaging of 5-(11)CMTP were executed. The results unveiled that the overall radiochemical yield with no decay correction was (14.6 ±7.2) %, the radiochemical purity was more than 95% and high uptake and long retention time of 5-(11)CMTP in liver, kidney and blood were observed but low uptake in brain and muscle were found, furthermore, high uptake of 5-(11)CMTP in tumor tissue was observed. It seems that 5-(11)CMTP will be a potential amino acid tracer for tumors imaging with PET.


Asunto(s)
Neoplasias/diagnóstico por imagen , Tomografía de Emisión de Positrones , Triptófano , Aminoácidos , Animales , Trazadores Radiactivos , Distribución Tisular , Triptófano/análogos & derivados
12.
Nanoscale ; 16(21): 10333-10339, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38738596

RESUMEN

We report an experimental study of quantum point contacts defined in a high-quality strained germanium quantum well with layered electric gates. At a zero magnetic field, we observed quantized conductance plateaus in units of 2e2/h. Bias-spectroscopy measurements reveal that the energy spacing between successive one-dimensional subbands ranges from 1.5 to 5 meV as a consequence of the small effective mass of the holes and the narrow gate constrictions. At finite magnetic fields perpendicular to the device plane, the edges of the conductance plateaus get split due to the Zeeman effect and Landé g factors were estimated to be ∼6.6 for the holes in the germanium quantum well. We demonstrate that all quantum point contacts in the same device have comparable performances, indicating a reliable and reproducible device fabrication process. Thus, our work lays a foundation for investigating multiple forefronts of physics in germanium-based quantum devices that require quantum point contacts as building blocks.

13.
J Colloid Interface Sci ; 674: 527-536, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-38943913

RESUMEN

Constructing unique heterostructures is a highly effective approach for enhancing the K+ storage capability of transition metal selenides. Such structures generate internal electric fields that significantly reduce the charge transfer activation energy. However, achieving a flawless interfacial region that maintains the optimal energy level gradient and degree of lattice matching remains a considerable challenge. In this study, we synthesised Setaria-like NiTe2/MoS2@C heterogeneous interfaces at which three-dimensional MoS2 nanosheets are evenly embedded in NiTe2 nanorods to form stabilised heterojunctions. The NiTe2/MoS2 heterojunctions display distinctive electronic configurations and several active sites owing to their low lattice misfits (δ = 13 %), strong electric fields, and uniform carbon shells. A NiTe2/MoS2@C anode in a potassium-ion battery (KIB) exhibited an impressive reversible capacity of 125.8 mAh/g after 1000 cycles at a rate of 500 mA g-1 and a stable reversible capacity of 111.7 mAh/g even after 3000 cycles at 1000 mA g-1. Even the NiTe2/MoS2@C//perylene tetracarboxylic dianhydride full battery configuration maintained a significant reversible capacity of 92.4 mAh/g after 100 cycles at 200 mA g-1, highlighting its considerable potential for application in KIBs. Calculations further revealed that the well-designed NiTe2/MoS2 heterojunction significantly promotes K+ ion diffusion.

14.
J Colloid Interface Sci ; 659: 21-30, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38157723

RESUMEN

Lithium metal is an attractive and promising anode material due to its high energy density and low working potential. However, the uncontrolled growth of lithium dendrites during repeated plating and stripping processes hinders the practical application of lithium metal batteries, leading to low Coulombic efficiency, poor lifespan, and safety concerns. In this study, we synthesized highly lithiophilic and conductive Ag nanoparticles decorated on SiO2 nanospheres to construct an optimized lithium host for promoting uniform Li deposition. The Ag nanoparticles not only act as lithiophilic sites but also provide high electrical conductivity to the Ag@SiO2@Ag anode. Additionally, the SiO2 layer serves as a lithiophilic nucleation agent, ensuring homogeneous lithium deposition and suppressing the growth of lithium dendrites. Theoretical calculations further confirm that the combination of Ag nanoparticles and SiO2 effectively enhances the adsorption ability of Ag@SiO2@Ag with Li+ ions compared to pure Ag and SiO2 materials. As a result, the Ag@SiO2@Ag coating, with its balanced lithiophilicity and conductivity, demonstrates excellent electrochemical performance, including high Coulombic efficiency, low polarization voltage, and long cycle life. In a full lithium metal cell with LiFePO4 cathode, the Ag@SiO2@Ag anode exhibits a high capacity of 133.1 and 121.4 mAh/g after 200 cycles at rates of 0.5 and 1C, respectively. These results highlight the synergistic coupling of lithiophilicity and conductivity in the Ag@SiO2@Ag coating, providing valuable insights into the field of lithiophilic chemistry and its potential for achieving high-performance batteries in the next generation.

15.
J Org Chem ; 78(5): 1790-801, 2013 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-22853560

RESUMEN

We report, for the first time, the synthesis of 8-aza-analogues of PGE2. The SmI2-mediated cross coupling reactions of γ-lactam-hemiaminal 9, lactam 2-pyridyl sulfide 17, and lactam 2-pyridyl sulfone 18 with activated alkenes/alkyne were first developed, giving the corresponding γ-lactams in 49-78%, 45-75%, and 75-90%, respectively. The reactions of lactam 2-pyridyl sulfide and 2-pyridyl sulfone proceeded with ≥12:1 trans-diastereoselectivities. This represents the first intermolecular coupling reaction of the γ-lactam N-α-alkyl radicals of types B, B1, and B2 with activated alkenes. Two radical-based mechanisms were suggested. The asymmetric synthesis of the 11-hydroxylated analogue of the highly selective EP4 receptor agonist PF-04475270 (30), the 11-hydroxylated analogue of ocular hypotensive CP-734432 (31), compounds 35 and 36 have been achieved on the basis of this method.


Asunto(s)
Alquenos/química , Lactamas/química , Piridinas/química , Pirrolidinonas/química , Hidroxilación , Estructura Molecular , Estereoisomerismo
16.
Molecules ; 18(2): 2166-82, 2013 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-23434869

RESUMEN

Polyprenols separated from lipids are promising new components from Ginkgo biloba L. leaves (GBL). In this paper, ginkgo lipids were isolated by extraction with petroleum ether, saponification, and molecular distillation. Eight known compounds: isophytol (1), nerolidol (2), linalool (3), ß-sitosterol acetate (4), ß-sitosterol (5), stigmasterol (6), ergosterol (7), ß-sitosterol-3-O-ß-D-glucopyranoside (8) and Ginkgo biloba polyprenols (GBP) were separated from GBL by chromatography and identified mainly by NMR. The separated and identified compounds 1, 2 and 3 are reported here for the first time in GBL. The 3D-DAD-HPLC-chromatogram (190-232 nm) of GBP was recorded. This study provides new evidence as there are no previous reports on antibacterial/antifungal activities and synergistic interactions between GBP and the compounds separated from GBL lipids against Salmonella enterica, Staphylocococus aureus and Aspergillus niger. Nerolidol (2) showed the highest activity among all the tested samples and of all mixture groups tested the GBP with isophytol (1) mixture had the strongest synergistic effect against Salmonella enterica among the three tested strains. A proportion of isophytol and GBP of 38.19%:61.81% (wt/wt) was determined by mixture design as the optimal proportion for the synergistic effect of GBP with isophytol against Salmonella enterica.


Asunto(s)
Antibacterianos/farmacología , Antifúngicos/farmacología , Ginkgo biloba/química , Lípidos/aislamiento & purificación , Pentanoles/farmacología , Hojas de la Planta/química , Antibacterianos/química , Antibacterianos/aislamiento & purificación , Antifúngicos/química , Antifúngicos/aislamiento & purificación , Cromatografía Líquida de Alta Presión , Sinergismo Farmacológico , Hemiterpenos , Lípidos/química , Pruebas de Sensibilidad Microbiana , Pentanoles/química , Pentanoles/aislamiento & purificación , Fitol/análogos & derivados , Fitol/farmacología , Salmonella enterica/efectos de los fármacos
17.
IEEE Trans Biomed Circuits Syst ; 17(5): 1022-1034, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37368798

RESUMEN

Body channel communication (BCC) has become a promising candidate in wireless body area networks (WBAN) due to its advantages in energy efficiency and security. However, BCC transceivers face two challenges: diverse application requirements and varying channel conditions. To overcome these challenges, this article proposes a re-configurable architecture for BCC transceivers (TRXs), whose key parameters and communication protocols can be software-defined (SD) according to the requirements. In the proposed TRX, the programmable direct-sampling receiver (RX) is a combination of a programmable low-noise amplifier (LNA) and a fast-convergent successive approaching register analog-to-digital converter (SAR ADC), to achieve simple but energy-efficient data reception. The programmable digital transmitter (TX) is essentially implemented by a 2-bit DAC array to transmit either wide-band carrier-free signals like 4-level pulse amplitude modulation (PAM-4) or non-return-to-zero (NRZ) or narrow-band carrier-based signals like on-off keying (OOK) or frequency shift keying (FSK). The proposed BCC TRX is fabricated in a 180-nm CMOS process. Through an in-vivo experiment, it achieves up to 10-Mbps data rate and 119.2 pJ/bit energy efficiency. Moreover, the TRX is able to communicate under long-distance (1.5 m) and body-shielding conditions by switching its protocols, which shows the potential to be deployed in all categories of WBAN applications.


Asunto(s)
Dispositivos Electrónicos Vestibles , Tecnología Inalámbrica , Diseño de Equipo , Telemetría , Amplificadores Electrónicos
18.
Front Cell Infect Microbiol ; 13: 1182480, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37293208

RESUMEN

Background: Early and accurate diagnosis of infection-induced osteomyelitis, which often involves increased PD-L1 expression, is crucial for better treatment outcomes. Radiolabeled anti-PD-L1 nuclear imaging allows for sensitive and non-invasive whole-body assessments of PD-L1 expression. This study aimed to compare the efficacy of 18F-FDG and an 18F-labeled PD-L1-binding peptide probe (18F-PD-L1P) in PET imaging of implant-associated Staphylococcus aureus osteomyelitis (IAOM). Methods: In this study, we synthesized an anti-PD-L1 probe and compared its efficacy with 18F-FDG and 18F-PD-L1P in PET imaging of implant-associated Staphylococcus aureus osteomyelitis (IAOM). The %ID/g ratios (i.e., radioactivity ratios between the infected and non-infected sides) of both probes were evaluated for sensitivity and accuracy in post-infected 7-day tibias and post-infected 21 days, and the intensity of 18F-PD-L1P uptake was compared with pathological changes measured by PD-L1 immunohistochemistry (IHC). Results: Compared with 18F-FDG, 18F-PDL1P demonstrated higher %ID/g ratios for both post-infected 7-day tibias (P=0.001) and post-infected 21 days (P=0.028). The intensity of 18F-PD-L1P uptake reflected the pathological changes of osteomyelitic bones. In comparison to 18F-FDG, 18F-PDL1P provides earlier and more sensitive detection of osteomyelitis caused by S. aureus. Conclusion: Our findings suggest that the 18F-PDL1P probe is a promising tool for the early and accurate detection of osteomyelitis caused by S. aureus.


Asunto(s)
Osteomielitis , Infecciones Estafilocócicas , Humanos , Tomografía Computarizada por Tomografía de Emisión de Positrones , Fluorodesoxiglucosa F18 , Staphylococcus aureus , Tomografía de Emisión de Positrones/métodos , Osteomielitis/diagnóstico por imagen , Infecciones Estafilocócicas/diagnóstico por imagen , Infecciones Estafilocócicas/metabolismo
19.
World J Clin Cases ; 10(18): 6241-6246, 2022 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-35949855

RESUMEN

BACKGROUND: At present, cases of esophageal neuroendocrine tumors combined with cardia adenocarcinoma are extremely rare worldwide, and there are no clinical reports. Herein, we describe such a case for clinical reference. CASE SUMMARY: The presence of cardia cancer and esophageal neuroendocrine tumors in a single patient has not yet been reported. The patient in this case underwent prompt endoscopic treatment and additional surgical resection. Pathology revealed the following: The distance between the cardia cancer and the esophageal neuroendocrine tumors was small, approximately 3 mm. Vascular invasion was observed. The esophageal neuroendocrine tumor was determined to be grade G3. According to the treatment guidelines, after the patient received an explanation of their condition, additional surgical procedures were provided in a timely manner. Early detection and early treatment can successfully prolong survival and improve the quality of life of patients. CONCLUSION: Early detection and early treatment can successfully prolong survival and improve the quality of life of such patients.

20.
Materials (Basel) ; 15(24)2022 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-36556598

RESUMEN

The ultra-wide bandgap semiconductor AlN has attracted a great deal of attention owing to its wide application potential in the field of electronics and optoelectronic devices. In this report, based on the mechanism of the physical vapor transport (PVT) growth of AlN crystal, the c- and m-plane AlN seed crystals were prepared simultaneously through special temperature field design. It is proved that AlN crystals with different orientations can be obtained at the same temperature field. The structure parameter of AlN crystal was obtained through the characteristic evaluations. In detail, XPS was used to analyze the chemical states and bonding states of the surface of seed crystals. The content of oxygen varied along with distinct orientations. Raman spectrum documented a small level of compressive stress on these crystal seeds. Tested results confirmed that the prepared AlN crystal seeds had high quality.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA