Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Environ Res ; 196: 110383, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33137313

RESUMEN

Accurate prediction of the environmental fate of Pb depends on the understanding of Pb coordination to mineral surfaces. Here, the proton and Pb adsorption and speciation on hematite nanocrystals with different exposed crystallographic facets were investigated. High-resolution transmission electron microscopy images revealed that hematite nanoplates (HNP) were of 75.3 ± 9.5% (001) facets and 24.6 ± 9.3% (012) facets, while hematite nanocubes (HNC) were of 76.0 ± 11.1% (012) facets and 24.0 ± 3.2% (110) facets. Our modeling results revealed that the proton affinity constant (log KH) of ≡FeOH-0.5 and ≡Fe3O-0.5 was 7.8 and 10.8 on hematite (012) facets, and changed to 7.7 and 11.7 on (110) facets, respectively. Owing to the different atomic arrangements, (012) facets not only have higher adsorption performance for Pb, but also present a greater dependence on pH than (110) facets. Additionally, our modeling further indicated that (012) facets bind Pb via both bidentate and tridentate complexes, while (110) facets bind Pb only through bidentate complexes at pH 3.0-6.5. These results facilitate a more detailed understanding of the complex species of Pb on hematite surface while also provide new insight into the reactivity mechanism of individual hematite facets.


Asunto(s)
Música , Nanopartículas , Adsorción , Plomo , Nanopartículas Magnéticas de Óxido de Hierro
2.
Environ Sci Technol ; 52(7): 4099-4107, 2018 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-29522329

RESUMEN

Proton and copper (Cu) binding to soil and lignite-based humic acid (HA) was investigated by combining X-ray absorption fine structure (XAFS) spectroscopy, isothermal titration calorimetry (ITC), and nonideal-competitive-adsorption (NICA) modeling. NICA model calculations and XAFS results showed that bidentate and monodentate complexation occurred for Cu binding to HA. The site-type-specific thermodynamic parameters obtained by combining ITC measurements and NICA calculations revealed that copper binding to deprotonated carboxylic-type sites was entropically driven and that to deprotonated phenolic-type sites was driven by entropy and enthalpy. Copper binding to HA largely depended on the site-type and coordination environment, but the thermodynamic binding mechanisms for Cu binding to the specific site-types were similar for the different HAs studied. By comparing the site-type-specific thermodynamic parameters of HA-Cu complexation with those of low molar mass organic acids, the Cu coordination could be further specified. Bidentate carboxylic-Cu complexes made the dominating contributions to Cu binding to HA. The present study not only yields molecular-scale mechanisms of ion binding to carboxylic- and phenolic-type sites of HA but also provides the new insight that the universal nature of site-type-specific thermodynamic data enables quantitative estimation of the binding structures of heavy metal ions to humic substances.


Asunto(s)
Cobre , Sustancias Húmicas , Calorimetría , Concentración de Iones de Hidrógeno , Protones
3.
Environ Sci Technol ; 52(18): 10522-10531, 2018 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-30078311

RESUMEN

The surface complexation modeling of metal adsorption to birnessites is in its infancy compared to the charge-distribution multisite ion complexation (CD-MUSIC) models for iron/aluminum (hydr)oxides. Therefore, using X-ray diffraction with Rietveld refinement to obtain the reactive sites and their densities, a CD-MUSIC model combined with a Stern-Gouy-Chapman electrical double layer (EDL) model for the external surface and a Donnan model for the interlayer surface is developed for birnessites with different Mn average oxidation state (MnAOS). Proton affinity constants and the charge distributions of Pb surface complexes were calculated a priori. By fitting Pb adsorption data to the model the obtained equilibrium constants (log KPb) of Pb complexes were 6.9-10.9 for the double-corner-sharing and double-edge-sharing Pb2+ complexes on the edge sites and 2.2-6.5 for the triple-corner-sharing Pb2+ complex on the vacancies. The larger log KPb value was obtained for higher MnAOS. Speciation calculations showed that with increasing MnAOS from 3.67 to 3.92 the interlayer surface contribution to the total Pb2+ adsorption increased from 43.2% to 48.6%, and the vacancy contribution increased from 43.9% to 54.7%. The vacancy contribution from interlayer surface was predominant. The present CD-MUSIC-EDL model contributes to understand better the difference in metal adsorption mechanism between birnessite and iron/aluminum (hydr)oxides.


Asunto(s)
Plomo , Adsorción , Óxidos
4.
Environ Sci Technol ; 52(3): 1348-1356, 2018 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-29319308

RESUMEN

The effect of adsorbed soil fulvic (JGFA) and humic acid (JGHA) on Pb binding to goethite was studied with the ligand charge distribution (LCD) model and X-ray absorption fine structure (XAFS) spectroscopy analysis. In the LCD model, the adsorbed small JGFA particles were evenly located in the Stern layer, but the large JGHA particles were distributed over the Stern layer and the diffuse layer, which mainly depended on the JGHA diameter and concentrations. Specific interactions of humic substances (HS) with goethite were modeled by inner-sphere complexes between the -FeOH20.5+ of goethite and the -COO- of HS and by Pb bridges between surface sites and COO- groups of HS. At low Pb levels, nearly 100% of Pb was bound as Pb bridges for both JGFA and JGHA. At high Pb levels and low HS loading, Pb-goethite almost dominated over the entire studied pH range, but at high HS loading, the primary species was goethite-HS-Pb at acidic pH and goethite-Pb at alkaline pH. Compared with JGFA, there was a constant contribution of Pb bridges of about 10% for JGHA. The linear combination fit of EXAFS, using Pb-HS and Pb-goethite as references, indicated that with increased HS loading more Pb was bound to adsorbed HS and less to goethite, which supported the LCD calculations.


Asunto(s)
Sustancias Húmicas , Suelo , Adsorción , Concentración de Iones de Hidrógeno , Compuestos de Hierro , Plomo , Minerales
5.
Environ Sci Technol ; 47(10): 5050-6, 2013 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-23614609

RESUMEN

Humic substances (HS), including humic acids (HA) and fulvic acids (FA), are important components of soil systems. HS form strong complexes with oppositely charged proteins, which will lead to changes in the enzyme activity. The effect of soil HS on the activity and stability of two enzymes was investigated as a function of pH, ionic strength, and mass ratio HS/enzyme. Humic acid (JGHA) and fulvic acid (JGFA) are negatively charged, lysozyme is net positive at pH values below 10.4, and urease is net positive below pH 5.2 or net negative above pH 5.2. The enzyme activities in the HS-enzyme complexes were suppressed when the enzymes were oppositely charged to the HS. The largest activity suppression was observed around the mass ratio HS/enzyme where the HS-protein complex was at its isoelectric point (IEP). At the IEP strong aggregation of the complexes led to encapsulation of the enzyme. The ionic strength was important; an increase decreased complex formation, but increased aggregation. Due to the larger hydrophobicity of JGHA than JGFA, the reduction in enzyme activity was stronger for JGHA. The enzyme stability also decreased maximally at mass ratio around the IEP of the complex when HS and protein were oppositely charged. When urease and HS were both negatively charged no complexes were formed, but the presence of JGHA or JGFA improved the activity and stability of the enzyme.


Asunto(s)
Benzopiranos/química , Sustancias Húmicas , Muramidasa/metabolismo , Suelo/química , Ureasa/metabolismo , Estabilidad de Enzimas , Concentración de Iones de Hidrógeno , Concentración Osmolar
6.
Environ Sci Technol ; 47(20): 11634-42, 2013 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-24040886

RESUMEN

Binding of lead (Pb) to soil fulvic acid (JGFA), soil humic acids (JGHA, JLHA), and lignite-based humic acid (PAHA) was investigated through binding isotherms and XAFS. Pb binding to humic substances (HS) increased with increasing pH and decreasing ionic strength. The NICA-Donnan model described Pb binding to the HS satisfactorily. The comparison of the model parameters showed substantial differences in median Pb affinity constants among JGFA, PAHA, and the soil HAs. Milne's "generic" parameters did not provide an adequate prediction for the soil samples. The Pb binding prediction with generic parameters for the soil HAs was improved significantly by using the value n(Pb1) = 0.92 instead of the generic value n(Pb1) = 0.60. The n(Pb1)/n(H1) ratios obtained were relatively high, indicating monodentate Pb binding to the carboxylic-type groups. The nPb2/nH2 ratios depended somewhat on the method of optimization, but the values were distinctly lower than the n(Pb1)/nH1 ratios, especially when the optimization was based on Pb bound vs log [Pb(2+)]. These low values indicate bidentate binding to the phenolic-type groups at high Pb concentration. The NICA-Donnan model does not consider bidentate binding of Pb to a carboxylic- and a phenolic-type group. The EXAFS results at high Pb loading testified that Pb was bound in bidentate complexes of one carboxylic and one phenolic group (salicylate-type) or two phenolic groups (catechol-type) in ortho position.


Asunto(s)
Benzopiranos/química , Sustancias Húmicas/análisis , Plomo/química , Modelos Teóricos , Suelo/química , Espectrometría por Rayos X , Concentración de Iones de Hidrógeno , Espectroscopía Infrarroja por Transformada de Fourier , Temperatura
7.
Sci Total Environ ; 834: 155370, 2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-35460783

RESUMEN

Humic acid (HA) as a soil natural organic matter (NOM) can participate in the interaction between proteins and clay minerals, depending on clay type, HA and protein content, and solution conditions. The effect of HA on the interaction of lysozyme (LSZ) with kaolinite (Kao) and montmorillonite (Mont) was investigated at (initial) pHi 5 and 8. In the solutions containing both HA and LSZ, HA/LSZ complexes were formed with a net charge density depending on pH and HA/LSZ mass ratio f. LSZ adsorption on clays in the presence of HA is dominated by adsorption of HA/LSZ complexes. The HA/LSZ mass ratio (fIEP,pHi) at the isoelectric point (IEP) is pH dependent. At f fIEP,pHi the HA/LSZ complexes were negative, both conditions caused relatively high equilibrium concentrations of LSZ in solution that decreased with increasing initial LSZ concentration. The present results enhance our insight in protein soil interactions for the case that clay particles are brought in contact with aqueous solutions that contain modest amounts of both NOM and protein and stress the importance of the NOM/protein mass ratio and solution pH.


Asunto(s)
Sustancias Húmicas , Caolín , Adsorción , Antivirales , Bentonita/química , Arcilla , Sustancias Húmicas/análisis , Concentración de Iones de Hidrógeno , Caolín/química , Muramidasa/química
8.
Colloids Surf B Biointerfaces ; 215: 112510, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35462231

RESUMEN

Urease in soil interacts with humic acid (HA), which results in a change of the enzymatic activity and stability. However, knowledge on the conformational change of urease in the presence of HA is still lacking. Therefore, the structure of urease (net zero charge at pH 5.2) interacting with HA and the microenvironments of the tyrosine (Tyr) and tryptophane (Trp) residues were investigated at pH 6.7 and 8.0 and 0.5 and 50 mmol L-1 KCl using spectroscopic techniques. Fluorescence intensity of urease was progressively inhibited by HA with increasing mass ratio f of HA/urease. Moreover, quenching of urease fluorescence by HA was strongest at pH 6.7 (and 50 mmol L-1 KCl) where the hydrophobic attraction was counteracted by only a weak electrostatic repulsion. HA exerted only a minor effect on the positions of the maximum excitation bands for Tyr and Trp residues, indicating insignificant changes in the microenvironment of these residues in the presence of HA. At pH 6.7, the amide I and amide II bands were inhibited by HA. Curve-fitting of the amide I band of urease in complexes indicated that the percentages of α-helix, ß-sheet and ß-turn were changed. At pH 8 HA had little effect on the circular dichroism and attenuated total reflectance Fourier transform infrared spectra of urease. At this pH the interaction between urease and HA was weak due to the relatively strong electrostatic repulsion and the conformational change was insignificant. The present results increase our understanding of negatively charged protein behavior in natural environments dominated by humic substances.


Asunto(s)
Sustancias Húmicas , Ureasa , Amidas , Dicroismo Circular , Sustancias Húmicas/análisis , Concentración de Iones de Hidrógeno , Suelo
9.
Sci Total Environ ; 768: 144858, 2021 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-33453531

RESUMEN

Modification of enzyme/protein conformation will affect the activities and functionality of enzymes. Previous studies have shown that the activity of lysozyme (LSZ) in the presence of humic acid (HA) is largely determined by the mass ratio of HA/LSZ (f = mHA/mLSZ), pH and ionic strength. Here the interaction and conformation of LSZ in HA/LSZ-complex/aggregate (HA/LSZ-c/a) were investigated by spectroscopic techniques at (initial) pH 5 and 8 and ionic strength 5 mmol/L. The results indicated a strong interaction between HA and LSZ. Circular dichroism (CD), and attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy showed that the helix content reached a minimum at the mass ratio of its iso electric point (IEP) at given initial pH, fIEP,pHi. The changes in ß-sheet and random coil of HA/LSZ-c/a were opposite with increasing f. The minimum of helix content at fIEP,pHi corresponded with the minimum LSZ activity and maximum aggregate size of HA/LSZ-c/a. UV-vis spectra and fluorescence measurements indicated that the amino acid residues (especially for tyrosine) in LSZ were in a more hydrophobic microenvironment before fIEP,pHi due to the formation of HA/LSZ-c/a, while were gradually exposed to a more polar microenvironment beyond fIEP,pHi with the disaggregation of HA/LSZ-c/a. HA and LSZ interaction caused a more hydrophobic microenvironment for the amino acid residues at initial pH 8. This study improves our understanding of enzyme/protein behavior in the natural environment.


Asunto(s)
Sustancias Húmicas , Muramidasa , Dicroismo Circular , Concentración Osmolar , Espectroscopía Infrarroja por Transformada de Fourier
10.
J Phys Chem B ; 112(5): 1339-49, 2008 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-18189380

RESUMEN

Adsorption of randomly branched polyelectrolytes, "hairy" particles and internally structured macromolecules, collectively denoted as heterogeneously charged nanoparticles, on charged surfaces is important in many technological and natural processes. In this paper, we will focus on (1) the charge regulation of both the nanoparticle and the surface and (2) the surface complexation between the particle functional groups and the surface sites and will theoretically study the adsorption using the extended surface complexation approach. The model explicitly considers the electrochemical potential of a nanoparticle with an average (smeared-out) structure and charge both in bulk solution and on the surface to obtain the equilibrium adsorption. The chemical heterogeneity of the particle is described by a distribution of the protonation constant. Detailed analysis of the chemical potential of the adsorbed nanoparticle reveals that the pH and salt dependence of the adsorption can be largely explained by the balance between an energy gain resulting from the particle and surface charge regulation and the surface complexation and an energy loss from the unfavorable interparticle electrostatic repulsion close to the surface. This conclusion is also supported by the strong impacts that the chemical heterogeneity of the particle functional groups, the magnitude of the surface complexation, the number of the functional groups, and the size of the particle have on the adsorption.


Asunto(s)
Nanopartículas/química , Adsorción , Algoritmos , Electrólitos , Transferencia de Energía , Concentración de Iones de Hidrógeno , Modelos Químicos , Tamaño de la Partícula , Sales (Química)/química , Soluciones , Propiedades de Superficie
11.
Environ Pollut ; 242(Pt A): 298-306, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29990937

RESUMEN

Interaction with natural organic matter (NOM) is hypothesized to impact the fate and bioavailability of enzymes and some hazardous proteins in terrestrial and aquatic environments. By using saturated column transport experiments the transport and deposition of the model enzyme lysozyme (LSZ), in the absence and presence of purified Aldrich humic acid (PAHA), was investigated at a series of mass ratios PAHA/LSZ at pH 5 and 8 and two ionic strength values (0.5 mM and 50 mM KCl solution). PAHA decreased LSZ transport under all conditions. The shapes of breakthrough curves (BTCs) and retention profiles (RPs) during cotransport of both colloids evolved from symmetrical to blocking with time and from flat to hyper-exponential with depth, respectively, in response to increases in mass ratio PAHA/LSZ. The results indicated that the "size-selective retention" and concurrent homo- and hetero-aggregation induced straining, which resulted in preferential retention of relatively large PAHA-LSZ aggregates in the column and elution of relatively small ones. Due to differences in aggregate size, in general, the enzyme activity of LSZ in the effluent was larger and that of the retained LSZ was smaller than that of the influent. Therefore, protein transport process could partially increase the enzyme activity and bring potential environmental hazards.


Asunto(s)
Sustancias Húmicas/análisis , Modelos Químicos , Coloides , Muramidasa , Concentración Osmolar , Cuarzo , Dióxido de Silicio
12.
J Colloid Interface Sci ; 504: 457-467, 2017 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-28600939

RESUMEN

To explore the adsorption mechanisms of a soil humic acid (HA) on purified kaolinite and montmorillonite, a combination of adsorption measurements, attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy and isothermal titration calorimetry (ITC) was employed at pH 4.0, 6.0 and 8.0. The adsorption affinities and plateaus of HA on the two clays increased with decreasing pH, indicating the importance of electrostatic interaction. The effects were more significant for kaolinite than for montmorillonite. The substantial adsorption at pH 8.0 indicated hydrophobic interaction and/or H-bonding also played a role. The ATR-FTIR results at pH 8.0 showed that the Si-O groups located at basal faces of the two clays were involved in the adsorption process. For kaolinite, at pH 4.0 and 6.0, HA adsorption occurred via OH groups on the edge faces and basal octahedral faces (both positively charged), plus some adsorption at Si-O group. The exothermic molar adsorption enthalpy decreased relatively dramatically with adsorption up to adsorption values of 0.7µmol/g on montmorillonite and 1.0µmol/g on kaolinite, but the decrease was attenuated at higher adsorption. The high exothermic molar enthalpy of HA binding to the clays was ascribed to ligand exchange and electrostatic binding, which are enthalpy-driven. At high adsorption values, JGHA adsorption by hydrophobic attraction and H-bonding also occurs.

13.
J Colloid Interface Sci ; 302(2): 442-57, 2006 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-16887135

RESUMEN

The LCD model (Ligand and Charge Distribution) has recently been proposed to describe the adsorption of humic substances to oxides, in which the CD-MUSIC model and the NICA model for ion binding to respectively oxides and humic substances are integrated. In this paper, the LCD model is improved by applying the ADAPT model (ADsorption and AdaPTation) to calculate the equilibrium distribution of the humic substances based on the change of the average chemical state of the particles. The improved LCD model is applied to calculate the adsorption of fulvic acid (Strichen) to goethite, in which it is assumed that the carboxylic type of groups of fulvic acid can form innersphere complexes with the surface sites. The charge of the carboxylic groups in the innersphere complexes is distributed between the 0- and d-plane, whereas the charge of the other carboxylic and phenolic groups is located in the d-plane. The average distribution of the carboxylic and phenolic groups among their various chemical states (carboxylic groups: innersphere complex, protonated and deprotonated; phenolic groups: protonated and deprotonated) depends on pH, ionic strength and loading, and are the outcome of the model. The calculation shows that the LCD model can describe sufficiently the effects of pH, ionic strength and loading on the adsorption of fulvic acid, using one adjustable parameter (logK (S,1)). The model calculations indicate that the chemical complexation between fulvic acid and goethite is the main driving force of the adsorption, while the electrostatic repulsion between the particles and the surface is the major limiting factor for further adsorption.


Asunto(s)
Benzopiranos/química , Compuestos de Hierro/química , Modelos Químicos , Adsorción , Concentración de Iones de Hidrógeno , Ligandos , Minerales , Propiedades de Superficie
14.
Adv Colloid Interface Sci ; 231: 59-102, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26969282

RESUMEN

Soils are complex and widely varying mixtures of organic matter and inorganic materials; adsorption of surfactants to soils is therefore related to the soil composition. We first discuss the properties of surfactants, including the critical micelle concentration (CMC) and surfactant adsorption on water/air interfaces, the latter gives an impression of surfactant adsorption to a hydrophobic surface and illustrates the importance of the CMC for the adsorption process. Then attention is paid to the most important types of soil particles: humic and fulvic acids, silica, metal oxides and layered aluminosilicates. Information is provided on their structure, surface properties and primary (proton) charge characteristics, which are all important for surfactant binding. Subsequently, the adsorption of different types of surfactants on these individual soil components is discussed in detail, based on mainly experimental results and considering the specific (chemical) and electrostatic interactions, with hydrophobic attraction as an important component of the specific interactions. Adsorption models that can describe the features semi-quantitatively are briefly discussed. In the last part of the paper some trends of surfactant adsorption on soils are briefly discussed together with some complications that may occur and finally the consequences of surfactant adsorption for soil colloidal stability and permeability are considered. When we seek to understand the fate of surfactants in soil and aqueous environments, the hydrophobicity and charge density of the soil or soil particles, must be considered together with the structure, hydrophobicity and charge of the surfactants, because these factors affect the adsorption. The pH and ionic strength are important parameters with respect to the charge density of the particles. As surfactant adsorption influences soil structure and permeability, insight in surfactant adsorption to soil particles is useful for good soil management.

15.
J Colloid Interface Sci ; 473: 141-51, 2016 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-27061366

RESUMEN

Binding of Cu(II) to soil fulvic acid (JGFA), soil humic acids (JGHA, JLHA), and lignite-based humic acid (PAHA) was investigated through NICA-Donnan modeling and conditional affinity spectrum (CAS). It is to extend the knowledge of copper binding by soil humic substances (HS) both in respect of enlarging the database of metal ion binding to HS and obtaining a good insight into Cu binding to the functional groups of FA and HA by using the NICA-Donnan model to unravel the intrinsic and conditional affinity spectra. Results showed that Cu binding to HS increased with increasing pH and decreasing ionic strength. The amount of Cu bound to the HAs was larger than the amount bound to JGFA. Milne's generic parameters did not provide satisfactory predictions for the present soil HS samples, while material-specific NICA-Donnan model parameters described and predicted Cu binding to the HS well. Both the 'low' and 'high' concentration fitting procedures indicated a substantial bidentate structure of the Cu complexes with HS. By means of CAS underlying NICA isotherm, which was scarcely used, the nature of the binding at different solution conditions for a given sample and the differences in binding mode were illustrated. It was indicated that carboxylic group played an indispensable role in Cu binding to HS in that the carboxylic CAS had stronger conditional affinity than the phenolic distribution due to its large degree of proton dissociation. The fact was especially true for JGFA and JLHA which contain much larger amount of carboxylic groups, and the occupation of phenolic sites by Cu was negligible. Comparable amounts of carboxylic and phenolic groups on PAHA and JGHA, increased the occupation of phenolic type sites by Cu. The binding strength of PAHA-Cu and JGHA-Cu was stronger than that of JGFA-Cu and JLHA-Cu. The presence of phenolic groups increased the chance of forming more stable complexes, such as the salicylate-Cu or catechol-Cu type structures.

16.
J Colloid Interface Sci ; 457: 121-30, 2015 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-26164243

RESUMEN

The effects of soil fulvic (JGFA) and humic acid (JGHA) on Pb binding to goethite were investigated with batch experiments and modeling. The CD-MUSIC and NICA-Donnan model could describe the Pb binding to, respectively, the binary Pb-goethite and Pb-HS systems. The adsorption of humic substances (HS) on goethite strongly depended on pH and was promoted by Pb binding. The mass amount of adsorbed JGFA (mg/g) was smaller than that of JGHA, but when expressed in number of particles/nm(2) the JGFA adsorption was higher. At low pH and low initial Pb concentration the linear additivity rule always underestimated Pb adsorption to goethite-HS complex, which was caused by the strong effect of adsorbed HS on the electrostatic potentials in the Stern layer region. At other conditions except the 450 mg/L JGHA in the 0.5 mmol/L Pb system the additivity rule predicted the experimental results reasonably well, and at high pH nearly all Pb is bound to goethite. At the same mass adsorbed, the effect of JGFA on Pb adsorption to goethite is stronger than that of JGHA, due to the fact that the JGFA particles were primarily adsorbed in the Stern layer, whereas JGHA particles were present in both Stern layer and diffuse layer. Therefore, the electrostatic potential profile of the goethite-JGFA complex is considerably different from that of goethite-JGHA complex and affects Pb binding strongly.

17.
J Colloid Interface Sci ; 451: 85-92, 2015 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-25890116

RESUMEN

The effects of particle size (5, 35 and 70nm) on the sorption of myo-inositol hexakisphosphate (IHP) and inorganic phosphate (KH2PO4, Pi) on γ-Al2O3 nanoparticles were investigated using batch sorption experiments, zeta potential measurements and solid-state nuclear magnetic resonance spectroscopy (NMR). The results show that the maximum sorption densities (µmolm(-2)) for IHP and Pi increase with decreasing γ-Al2O3 particle size. The sorption affinity of γ-Al2O3 for IHP and Pi generally increases with decreasing particle size, and the sorption affinity for IHP is approximately one order of magnitude greater than that for Pi. In our experimental time scale, surface complexation is the main mechanism for IHP and Pi sorption on large size γ-Al2O3. While an additional surface precipitation mechanism, indicated by solid-state (31)P and (27)Al NMR data, is partly responsible for the greater sorption density on very small size γ-Al2O3. Compared with Pi, the effect of particle size on the sorption of IHP is more pronounced. The results suggest a size-dependent surface reactivity of Al2O3 nanoparticles with Pi/IHP. The underlying mechanism will also be relevant for other small nanosize (hydr)oxide particles and is important for our understanding of the role of small nanoparticles in controlling the mobility and fate of organic and inorganic phosphates in the environment.

18.
J Hazard Mater ; 288: 80-8, 2015 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-25698569

RESUMEN

Vanadium(V)-doped hexagonal turbostratic birnessites were synthesized and characterized by multiple techniques and were used to remove Pb(2+) from aqueous solutions. With increasing V content, the V(V)-doped birnessites have significantly decreased crystallinity, i.e., the thickness of crystals in the c axis decreases from 9.8 nm to ∼0.7 nm, and the amount of vacancies slightly increases from 0.063 to 0.089. The specific surface areas of these samples increase after doping while the Mn average oxidation sates are almost constant. V has a valence of +5 and tetrahedral symmetry, and exists as oxyanions, including V6O16(2-), and VO4(3-) on birnessite edge sites by forming monodentate corning-sharing complexes. Pb LIII-edge extended X-ray absorption fine structure (EXAFS) spectra analysis shows that, at low V contents (V/Mn≤0.07) Pb(2+) mainly binds with birnessite on octahedral vacancy and especially edge sites whereas at higher V contents (V/Mn>0.07) more Pb(2+) associates with V oxyanions and form vanadinite [Pb5(VO4)3Cl]-like precipitates. With increasing V(V) content, the Pb(2+) binding affinity on the V-doped birnessites significantly increases, ascribing to both the formation of the vanadinite precipitates and decreased particle sizes of birnessite. These results are useful to design environmentally benign materials for treatment of metal-polluted water.


Asunto(s)
Plomo/química , Óxidos/química , Compuestos de Vanadio/química , Cristalización , Plomo/aislamiento & purificación , Conformación Molecular , Tamaño de la Partícula , Soluciones , Termodinámica , Contaminantes Químicos del Agua/análisis , Contaminación Química del Agua/análisis
19.
J Colloid Interface Sci ; 275(2): 360-7, 2004 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-15178260

RESUMEN

The binding of organic contaminants to dissolved humic acids reduces the free concentration of the contaminants in the environment and also may cause changes to the solution properties of humic acids. Surfactants are a special class of contaminants that are introduced into the environment either through wastewater or by site-specific contamination. The amphiphilic nature of both surfactants and humic acids can easily lead to their mutual attraction and consequently affect the solution behavior of the humics. Binding of an anionic surfactant (sodium dodecyl sulfate, SDS) and two cationic surfactants (dodecyl- and cetylpyridinium chloride, DPC and CPC) to purified Aldrich humic acid (PAHA) is studied at pH values of 5, 7, and 10 in solutions with a 0.025 M ionic strength (I). Monomer concentrations of the surfactants are measured with a surfactant-selective electrode. At I = 0.025 M, no significant binding is observed between the anionic surfactant (SDS) and PAHA, whereas the two cationic surfactants (DPC, CPC) bind strongly to PAHA over the pH range investigated. The binding is due both to electrostatic and hydrophobic attraction. The initial affinity increases with increasing pH (i.e., negative charge of PAHA) and tail length of the surfactant. Binding reaches a pseudo-plateau value (2-5 mmol/g) when the charge associated with PAHA is neutralized by that of the bound surfactant molecules. The pseudo-plateau values for DPC and CPC are very similar and depend on the solution pH. The cationic surfactant-PAHA complexes precipitate when the charge neutralization point is reached. This occurs at approximately 10% of the critical micelle concentration or CMC. This type of phase separation commonly occurs during surfactant binding to oppositely charged polyelectrolytes. For CPC, the precipitation is complete, but in the case of DPC, a noticeable fraction of PAHA remains in solution. At very low CPC concentrations (less than 0.1% of the CMC), CPC binding to PAHA is cooperative. The investigated range of concentrations for DPC was too limited to reach a similar conclusion. The results of this study demonstrate that the fate of humic acids will be strongly affected by the presence of low cationic surfactant concentrations in aqueous environmental systems.


Asunto(s)
Cetilpiridinio/química , Sustancias Húmicas , Dodecil Sulfato de Sodio/química , Tensoactivos/química , Concentración de Iones de Hidrógeno
20.
J Colloid Interface Sci ; 430: 40-6, 2014 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-24998052

RESUMEN

The interaction between protein and soluble organic matter is studied through layer-by-layer assembly of lysozyme (LSZ) and purified Aldrich humic acid (PAHA) at a solid surface (2-D) and in solution (3-D). By bringing a silica surface in alternating contact with solutions of LSZ and PAHA a layer-by-layer LSZ-PAHA assembly is formed. At pH 5 the negative charge density of PAHA is about 3 times that of the positive LSZ; the layers of LSZ and PAHA are stable and the adsorbed amounts decrease with increasing ionic strength. The mass ratios PAHA/LSZ in the layers depend on the ionic strength; K(+) incorporation is relatively large (∼25%) when PAHA is the outer layer of the assembly. At pH 6 and 8, and moderate ionic strength (0-100 mmol L(-1) KCl) the assembly is accompanied by partial solubilization of positive LSZ by the much more negative PAHA followed by desorption of the complex. The solubilization increases with increasing pH, and decreases with increasing KCl concentration. At 400 mmol L(-1) KCl the electrostatic interactions are so well screened that the assembly is no longer accompanied by layer erosion. Assembly of PAHA and LSZ in solution is also investigated at pH 5 and 5 mmol L(-1) KCl. The PAHA/LSZ mass ratio at the iso-electric point of the assembly depends on the order of the addition. When LSZ is added to the negative assembly K(+) is incorporated in the complex, but when PAHA is added to the positive assembly PAHA and LSZ neutralize each other.


Asunto(s)
Sustancias Húmicas , Muramidasa/química , Concentración de Iones de Hidrógeno , Concentración Osmolar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA