Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Genet Mol Biol ; 47(Suppl 1): e20230317, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38829285

RESUMEN

In the search for alternatives to overcome the challenge imposed by drug resistance development in cancer treatment, the modulation of autophagy has emerged as a promising alternative that has achieved good results in clinical trials. Nevertheless, most of these studies have overlooked a novel and selective type of autophagy: chaperone-mediated autophagy (CMA). Following its discovery, research into CMA's contribution to tumor progression has accelerated rapidly. Therefore, we now understand that stress conditions are the primary signal responsible for modulating CMA in cancer cells. In turn, the degradation of proteins by CMA can offer important advantages for tumorigenesis, since tumor suppressor proteins are CMA targets. Such mutual interaction between the tumor microenvironment and CMA also plays a crucial part in establishing therapy resistance, making this discussion the focus of the present review. Thus, we highlight how suppression of LAMP2A can enhance the sensitivity of cancer cells to several drugs, just as downregulation of CMA activity can lead to resistance in certain cases. Given this panorama, it is important to identify selective modulators of CMA to enhance the therapeutic response.

2.
Biosci Rep ; 44(5)2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38717250

RESUMEN

Temozolomide (TMZ) is the leading therapeutic agent for combating Glioblastoma Multiforme (GBM). Nonetheless, the persistence of chemotherapy-resistant GBM cells remains an ongoing challenge, attributed to various factors, including the translesion synthesis (TLS) mechanism. TLS enables tumor cells to endure genomic damage by utilizing specialized DNA polymerases to bypass DNA lesions. Specifically, TLS polymerase Kappa (Polκ) has been implicated in facilitating DNA damage tolerance against TMZ-induced damage, contributing to a worse prognosis in GBM patients. To better understand the roles of Polκ in TMZ resistance, we conducted a comprehensive assessment of the cytotoxic, antiproliferative, antimetastatic, and genotoxic effects of TMZ on GBM (U251MG) wild-type (WTE) and TLS Polκ knockout (KO) cells, cultivated as three-dimensional (3D) tumor spheroids in vitro. Initial results revealed that TMZ: (i) induces reductions in GBM spheroid diameter (10-200 µM); (ii) demonstrates significant cytotoxicity (25-200 µM); (iii) exerts antiproliferative effects (≤25 µM) and promotes cell cycle arrest (G2/M phase) in Polκ KO spheroids when compared with WTE counterparts. Furthermore, Polκ KO spheroids exhibit elevated levels of cell death (Caspase 3/7) and display greater genotoxicity (53BP1) than WTE following TMZ exposure. Concerning antimetastatic effects, TMZ impedes invadopodia (3D invasion) more effectively in Polκ KO than in WTE spheroids. Collectively, the results suggest that TLS Polκ plays a vital role in the survival, cell death, genotoxicity, and metastatic potential of GBM spheroids in vitro when subjected to TMZ treatment. While the precise mechanisms underpinning this resistance remain elusive, TLS Polκ emerges as a potential therapeutic target for GBM patients.


Asunto(s)
ADN Polimerasa Dirigida por ADN , Resistencia a Antineoplásicos , Glioblastoma , Esferoides Celulares , Temozolomida , Humanos , Glioblastoma/tratamiento farmacológico , Glioblastoma/patología , Glioblastoma/genética , Glioblastoma/enzimología , Temozolomida/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , ADN Polimerasa Dirigida por ADN/metabolismo , ADN Polimerasa Dirigida por ADN/genética , Esferoides Celulares/efectos de los fármacos , Esferoides Celulares/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Daño del ADN/efectos de los fármacos , Apoptosis/efectos de los fármacos , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/enzimología , Antineoplásicos Alquilantes/farmacología
3.
DNA Repair (Amst) ; 141: 103715, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39029375

RESUMEN

Glioblastoma (GBM) is a highly aggressive brain tumor associated with poor patient survival. The current standard treatment involves invasive surgery, radiotherapy, and chemotherapy employing temozolomide (TMZ). Resistance to TMZ is, however, a major challenge. Previous work from our group has identified candidate genes linked to TMZ resistance, including genes encoding translesion synthesis (TLS) DNA polymerases iota (PolÉ©) and kappa (Polκ). These specialized enzymes are known for bypassing lesions and tolerating DNA damage. Here, we investigated the roles of PolÉ© and Polκ in TMZ resistance, employing MGMT-deficient U251-MG glioblastoma cells, with knockout of either POLI or POLK genes encoding PolÉ© and Polκ, respectively, and assess their viability and genotoxic stress responses upon subsequent TMZ treatment. Cells lacking either of these polymerases exhibited a significant decrease in viability following TMZ treatment compared to parental counterparts. The restoration of the missing polymerase led to a recovery of cell viability. Furthermore, knockout cells displayed increased cell cycle arrest, mainly in late S-phase, and lower levels of genotoxic stress after TMZ treatment, as assessed by a reduction of γH2AX foci and flow cytometry data. This implies that TMZ treatment does not trigger a significant H2AX phosphorylation response in the absence of these proteins. Interestingly, combining TMZ with Mirin (double-strand break repair pathway inhibitor) further reduced the cell viability and increased DNA damage and γH2AX positive cells in TLS KO cells, but not in parental cells. These findings underscore the crucial roles of PolÉ© and Polκ in conferring TMZ resistance and the potential backup role of homologous recombination in the absence of these TLS polymerases. Targeting these TLS enzymes, along with double-strand break DNA repair inhibition, could, therefore, provide a promising strategy to enhance TMZ's effectiveness in treating GBM.


Asunto(s)
Metilasas de Modificación del ADN , ADN Polimerasa iota , Enzimas Reparadoras del ADN , ADN Polimerasa Dirigida por ADN , Resistencia a Antineoplásicos , Glioblastoma , Temozolomida , Temozolomida/farmacología , Humanos , Glioblastoma/genética , Glioblastoma/tratamiento farmacológico , Glioblastoma/metabolismo , Glioblastoma/patología , ADN Polimerasa Dirigida por ADN/metabolismo , ADN Polimerasa Dirigida por ADN/genética , Línea Celular Tumoral , Metilasas de Modificación del ADN/metabolismo , Metilasas de Modificación del ADN/genética , Enzimas Reparadoras del ADN/metabolismo , Enzimas Reparadoras del ADN/genética , Proteínas Supresoras de Tumor/metabolismo , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/deficiencia , Antineoplásicos Alquilantes/farmacología , Antineoplásicos Alquilantes/uso terapéutico , Daño del ADN , Supervivencia Celular/efectos de los fármacos , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Reparación del ADN , Técnicas de Inactivación de Genes
4.
J Mol Biol ; 435(24): 168353, 2023 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-37935254

RESUMEN

The Y-family DNA polymerases - Pol ι, Pol η, Pol κ and Rev1 - are most well-known for their roles in the DNA damage tolerance pathway of translesion synthesis (TLS). They function to overcome replication barriers by bypassing DNA damage lesions that cannot be normally replicated, allowing replication forks to continue without stalling. In this work, we demonstrate a novel interaction between each Y-family polymerase and the nucleotide excision repair (NER) proteins, RAD23A and RAD23B. We initially focus on the interaction between RAD23A and Pol ι, and through a series of biochemical, cell-based, and structural assays, find that the RAD23A ubiquitin-binding domains (UBA1 and UBA2) interact with separate sites within the Pol ι catalytic domain. While this interaction involves the ubiquitin-binding cleft of UBA2, Pol ι interacts with a distinct surface on UBA1. We further find that mutating or deleting either UBA domain disrupts the RAD23A-Pol ι interaction, demonstrating that both interactions are necessary for stable binding. We also provide evidence that both RAD23 proteins interact with Pol ι in a similar manner, as well as with each of the Y-family polymerases. These results shed light on the interplay between the different functions of the RAD23 proteins and reveal novel binding partners for the Y-family TLS polymerases.


Asunto(s)
Enzimas Reparadoras del ADN , Proteínas de Unión al ADN , ADN Polimerasa Dirigida por ADN , Daño del ADN , ADN Polimerasa iota/química , Reparación del ADN , Replicación del ADN , ADN Polimerasa Dirigida por ADN/metabolismo , Ubiquitinas/química , Proteínas de Unión al ADN/química , Enzimas Reparadoras del ADN/química
5.
Biomedicines ; 11(4)2023 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-37189700

RESUMEN

The transcription factor NRF2 is constitutively active in glioblastoma, a highly aggressive brain tumor subtype with poor prognosis. Temozolomide (TMZ) is the primary chemotherapeutic agent for this type of tumor treatment, but resistance to this drug is often observed. This review highlights the research that is demonstrating how NRF2 hyperactivation creates an environment that favors the survival of malignant cells and protects against oxidative stress and TMZ. Mechanistically, NRF2 increases drug detoxification, autophagy, DNA repair, and decreases drug accumulation and apoptotic signaling. Our review also presents potential strategies for targeting NRF2 as an adjuvant therapy to overcome TMZ chemoresistance in glioblastoma. Specific molecular pathways, including MAPKs, GSK3ß, ßTRCP, PI3K, AKT, and GBP, that modulate NRF2 expression leading to TMZ resistance are discussed, along with the importance of identifying NRF2 modulators to reverse TMZ resistance and develop new therapeutic targets. Despite the significant progress in understanding the role of NRF2 in GBM, there are still unanswered questions regarding its regulation and downstream effects. Future research should focus on elucidating the precise mechanisms by which NRF2 mediates resistance to TMZ, and identifying potential novel targets for therapeutic intervention.

6.
Mol Immunol ; 101: 507-513, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30144701

RESUMEN

Cisplatin is a chemotherapy used to treat different types of cancer, such as testicular, bladder and head and neck. Physical exercise has been shown to improve cancer therapy and recently, it was demonstrated to be able to diminish side effects such as acute kidney injury (AKI), a common side effect in cisplatin treatment. In both cases, the modulation of inflammatory cytokines seems to be one of the mechanisms, but little is known about the immune cells in this process. Here, we investigated the role of CD4 + T cells in the AKI protection by physical exercise. We subjected C57Bl6 mice to long-term physical exercise (EX) before cisplatin treatment. Sedentary groups were used as control (CT). We confirmed that physical exercise decreased AKI by evaluating creatinine and Kim-1 levels, in the serum and kidney respectively. Analyzing the organs weight, we noticed a decrease in sedentary (CIS) and exercised (CIS-EX) cisplatin treated groups. Epididymal and brown adipose tissue weight were decreased in cisplatin treated subjects in comparison to untreated groups, as well as liver and spleen. We then investigated the profile of CD4 + T cells in the spleen and we observed increased levels of Tregs and CD4+CD25+ cells in CIS group, while CIS-EX presented similar amounts as control groups. Analyzing the kidney lymph nodes, we noticed a decrease of CD4+ cells in both CIS and CIS-EX group. However, a more activated phenotype (CD69+ and CD25+) was observed in CIS groups in comparison to CIS-EX group, as well as the presence of Tregs. We then investigated the production of cytokines by these cells and no difference among the groups was observed in cytokines production in splenic CD4 + T cells. However, a clear increase in TNF and IL-10 production was observed in CD4 + T cells from lymph nodes, while CIS-EX group presented similar levels as the control groups. We confirmed that physical exercise was able to diminish cisplatin-induced AKI with concomitant decrease in CD4 + T cell activation.


Asunto(s)
Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/inmunología , Linfocitos T CD4-Positivos/inmunología , Cisplatino/efectos adversos , Activación de Linfocitos/inmunología , Condicionamiento Físico Animal , Lesión Renal Aguda/prevención & control , Animales , Citocinas/biosíntesis , Ganglios Linfáticos/patología , Masculino , Ratones Endogámicos C57BL , Fenotipo , Bazo/patología
7.
Cell Rep ; 19(11): 2272-2288, 2017 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-28614714

RESUMEN

The underlying mechanism by which MyD88 regulates the development of obesity, metainflammation, and insulin resistance (IR) remains unknown. Global deletion of MyD88 in high-fat diet (HFD)-fed mice resulted in increased weight gain, impaired glucose homeostasis, elevated Dectin-1 expression in adipose tissue (AT), and proinflammatory CD11c+ AT macrophages (ATMs). Dectin-1 KO mice were protected from diet-induced obesity (DIO) and IR and had reduced CD11c+ AT macrophages. Dectin-1 antagonist improved glucose homeostasis and decreased CD11c+ AT macrophages in chow- and HFD-fed MyD88 KO mice. Dectin-1 agonist worsened glucose homeostasis in MyD88 KO mice. Dectin-1 expression is increased in AT from obese individuals. Together, our data indicate that Dectin-1 regulates AT inflammation by promoting CD11c+ AT macrophages in the absence of MyD88 and identify a role for Dectin-1 in chronic inflammatory states, such as obesity. This suggests that Dectin-1 may have therapeutic implications as a biomarker for metabolic dysregulation in humans.


Asunto(s)
Tejido Adiposo/metabolismo , Resistencia a la Insulina/genética , Lectinas Tipo C/metabolismo , Macrófagos/metabolismo , Obesidad/genética , Animales , Humanos , Masculino , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA