Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cancer Cell Int ; 24(1): 80, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38383371

RESUMEN

Cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC) still present a huge threaten to women's health, especially the local advanced patients. Hence, developing more effectiveness prognostic signatures is urgently needed. This study constructed and verified a robust RNA-binding proteins (RBPs) related signature through a series of bioinformatics methods and explored the biological function of hub RBP in vitro experiments. As a result, the 10 RBPs signature was successfully established and could act as an independent prognostic biomarker in CESC patients, which displayed the highest sensitivity and specificity in prognosis prediction compared with other clinicopathological parameters. The risk model also presented good performance in risk stratification among CESC patients. Besides, a nomogram was constructed based on pathological stage and the risk signature and exhibited satisfactory accuracy in prognosis prediction. Functional enrichment indicated that the risk signature mainly participated in immune-related pathways and cancer-related pathways, and the infiltration level of immune cells and immune checkpoints showed a significantly higher degree in low-risk patients compared with high-risk patients. Notably, the 10 RBPs signature act as a novel biomarker in immunotherapy and chemotherapy response. In addition, PRPF40B was selected as hub RBP and its transcription and translation levels were obviously increased in CESC tissues, as well as Hela and Siha cells. Knockdown of PRPF40B inhibits the proliferation, migration and invasion of Hela and Siha cells in vitro. In conclusion, our research provides a noticeable strategy in prognostic prediction among CESC patients, which may illuminate the prospect of CESC patients' clinical outcome.

2.
Diabetes Obes Metab ; 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39192528

RESUMEN

AIM: To investigate the association between fish oil supplementation and subsequent risk of chronic kidney disease (CKD) among patients with diabetes, and further evaluate the mediation effect of typical glycolipid and inflammatory biomarkers. METHODS: In total, 24 497 patients with diabetes from the UK Biobank were included. Cox proportional hazards regression models were used to estimate the hazard ratios (HRs) and 95% confidence intervals (CIs) for CKD risk, and the rate advancement period was calculated to quantify and communicate the impact of fish oil upon that risk. In addition, we also used mediation analysis to assess the mediating role of plasma biomarkers. RESULTS: Overall, 7122 patients reported taking fish oil supplements. During a mean of 11.3 years of follow-up, 3533 CKD cases occurred. In the fully adjusted model, fish oil use was inversely associated with the incidence of CKD (HR 0.90; 95% CI: 0.83, 0.97), which was mediated by serum levels of HbA1c (4.7%), C-reactive protein (CRP) (3.4%) and high-density lipoprotein cholesterol (HDL-C) (2.3%). Participants who took fish oil supplements displayed the same risk of CKD events, but that risk was delayed by approximately 2.79 years compared with non-users of fish oil. CONCLUSIONS: Our findings advocate the beneficial role of fish oil use in preventing CKD among patients with diabetes, which may be mediated by serum levels of HbA1c, CRP and HDL-C, and support public health policies aiming to promote fish oil supplementation for the prevention of diabetes complications.

3.
Heliyon ; 10(17): e37401, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39290288

RESUMEN

Nitrogen mustard (NM) is a chemotherapeutic agent capable of alkylating nucleophilic proteins and DNA, causing severe cell damage. However, no reports have been on the dynamic changes in proteomics induced by NM. In this study, we established a model of acute exposure to NM for 1 h and a continuous cultured model for 24 h after NM removal (repair stage) using 16HBE cells. The nuclear protein spectrum and nuclear proteins crosslinked with DNA were analyzed, and the function of p97 during NM damage was examined. An hour of NM exposure resulted in severe changes in the nuclear protein spectrum and protein into the cell nucleus, which is mainly involved in nuclear acid-related issues. After 24 h, the return to normal process of the types and amounts of differentially expressed proteins was inhibited by si-p97. The main processes involved in si-p97 intervention were nucleocytoplasmic transport, processing in the endoplasmic reticulum, metabolic abnormalities, and DNA-response; however. An hour of exposure to NM increased DNA-protein crosslinking (DPC), total-H2AX, and p-H2AX. In contrast, si-p97 only further increased or maintained their levels at 24 h yet not at 1 h. The effect of the proteasome inhibitor, MG132, was similar to that of si-p97. The siRNA of DVC1, a partner of p97, also increased the DPC content. Both si-p97 and si-DVC1 increased the cytoplasmic levels of the proteasome (PSMD2). These results suggest acute NM exposure induces severe nuclear protein spectral changes, rapid protein influx into the nucleus, DPC formation, and DNA double-strand breaks. Furthermore, our data indicated that p97 is involved in normal protein spectrum maintenance and DPC removal after NM withdrawal, requiring the participation of DVC1 and the proteasome.

4.
Research (Wash D C) ; 7: 0401, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39010883

RESUMEN

Consumption of fried foods is highly prevalent in the Western dietary pattern. Western diet has been unfavorably linked with high risk of developing cardiovascular diseases. Heart failure (HF) as a cardiovascular disease subtype is a growing global pandemic with high morbidity and mortality. However, the causal relationship between long-term fried food consumption and incident HF remains unclear. Our population-based study revealed that frequent fried food consumption is strongly associated with 15% higher risk of HF. The causal relationship may be ascribed to the dietary acrylamide exposure in fried foods. Further cross-sectional study evidenced that acrylamide exposure is associated with an increased risk of HF. Furthermore, we discover and demonstrate that chronic acrylamide exposure may induce HF in zebrafish and mice. Mechanistically, we reveal that acrylamide induces energy metabolism disturbance in heart due to the mitochondria dysfunction and metabolic remodeling. Moreover, acrylamide exposure induces myocardial apoptosis via inhibiting NOTCH1-phosphatidylinositol 3-kinase/AKT signaling. In addition, acrylamide exposure could affect heart development during early life stage, and the adverse effect of acrylamide exposure is a threat for next generation via epigenetic change evoked by DNA methyltransferase 1 (DNMT1). In this study, we reveal the adverse effects and underlying mechanism of fried foods and acrylamide as a typical food processing contaminant on HF from population-based observations to experimental validation. Collectively, these results both epidemiologically and mechanistically provide strong evidence to unravel the mechanism of acrylamide-triggered HF and highlight the significance of reducing fried food consumption for lower the risk of HF.

5.
Chem Biol Interact ; 382: 110643, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37481222

RESUMEN

To investigate the role of the liver kinase (LK) B1 protein, an activator of AMP-activated protein kinase (AMPK), in AMPK signaling suppression when exposed to vesicant, a kind of chemical warfare agent. Cultured human bronchial epithelial cells were inflicted with sulfur mustard (SM) analog, 2-chloroethyl ethyl sulfide (CEES) of 0.2-1.0 mM concentration, and cell proliferation, apoptosis, autophagy, and cellular ATP level were analyzed up to 24 h after the exposure. Focusing on LKB1, heat shock protein (HSP) 90, and cell division cycle (CDC) 37 proteins, the protein expression, phosphorylation, and interaction were examined with western blot, immunofluorescence staining, and/or immunoprecipitation. AMPK signaling was found to be inhibited 24 h after being exposed to either sub-cytotoxic (0.5 mM) or cytotoxic (1.0 mM) concentration of CEES based on MTS assay. Consistently, the degradation of the LKB1 protein and its less interaction with the HSP90/CDC37 complex was confirmed. It was found that 1.0, not 0.5 mM CEES also decreased the CDC37 protein, proteasome activity, and cellular ATP content that modulates HSP90 protein conformation. Inhibiting proteasome activity could alternatively activate autophagy. Finally, either 0.5 or 1.0 mM CEES activated HSP70 and autophagy, and the application of an HSP70 inhibitor blocked autophagy and autophagic degradation of the LKB1 protein. In conclusion, we reported here that AMPK signaling inactivation by CEES was a result of LKB1 protein loss via less protein complex formation and enhanced degradation.


Asunto(s)
Gas Mostaza , Humanos , Gas Mostaza/toxicidad , Proteínas Quinasas Activadas por AMP , Complejo de la Endopetidasa Proteasomal , Proteínas Serina-Treonina Quinasas , Chaperonas Moleculares , Proteínas HSP90 de Choque Térmico , Células Epiteliales/metabolismo , Adenosina Trifosfato , Proteínas de Ciclo Celular/metabolismo , Chaperoninas/metabolismo
6.
Life Sci ; 310: 121054, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36228772

RESUMEN

Ambient air pollution is one of the most serious public health problems over the last decade. It causes about 4.2 million deaths worldwide each year, and fine particulate matter (PM2.5) is one of the major components of air pollution. Many chronic non-communicable diseases may originate from the early-life environment that alters the development of offspring. Pregnancy and lactation are plastic "window periods" for offspring metabolism, during which PM2.5 exposure is associated with long-term metabolic dysfunction in offspring. In this review, we summarized the scientific evidence from both epidemiological and toxicological studies, which suggest that perinatal exposure to PM2.5 causes obesity and metabolic diseases in progeny, including hypertension, cardiometabolic dysfunction, diabetes, and non-alcoholic fatty liver disease (NAFLD). Therefore, prevention strategies are needed to inform government policies and clinical counseling to reduce maternal exposure and its associated health hazards, and ultimately improve the quality of the newborn population.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Enfermedades Metabólicas , Embarazo , Recién Nacido , Femenino , Humanos , Material Particulado/toxicidad , Exposición Materna/efectos adversos , Contaminación del Aire/efectos adversos , Enfermedades Metabólicas/inducido químicamente , Enfermedades Metabólicas/epidemiología , Obesidad/epidemiología , Obesidad/etiología , Susceptibilidad a Enfermedades , Contaminantes Atmosféricos/toxicidad , Exposición a Riesgos Ambientales/efectos adversos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA