Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sensors (Basel) ; 19(19)2019 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-31546580

RESUMEN

This paper presents a novel measuring scheme for fiber interferometer (FI) based sensors. With the advantages of being small sizes, having high sensitivity, a simple structure, good durability, being easy to integrate fiber optic communication and having immunity to electromagnetic interference (EMI), FI based sensing devices are suitable for monitoring remote system states or variations in physical parameters. However, the sensing mechanism for the interference spectrum shift of FI based sensors requires expensive equipment, such as a broadband light source (BLS) and an optical spectrum analyzer (OSA). This has strongly handicapped their wide application in practice. To solve this problem, we have, for the first time, proposed a smart measuring scheme, in which a commercial laser diode (LD) and a photodetector (PD) are used to detect the equivalent changes of optical power corresponding to the variation in measuring parameters, and a signal processing system is used to analyze the optical power changes and to determine the spectrum shifts. To demonstrate the proposed scheme, a sensing device on polymer microcavity fiber Fizeau interferometer (PMCFFI) is taken as an example for constructing a measuring system capable of long-distance monitoring of the temperature and relative humidity. In this paper, theoretical analysis and fundamental tests have been carried out. Typical results are presented to verify the feasibility and effectiveness of the proposed measuring scheme, smartly converting the interference spectrum shifts of an FI sensing device into the corresponding variations of voltage signals. With many attractive features, e.g., simplicity, low cost, and reliable remote-monitoring, the proposed scheme is very suitable for practical applications.

2.
Sensors (Basel) ; 17(11)2017 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-29149054

RESUMEN

This paper presents a novel design method in which a dual-polymer fiber Fizeau interferometer (DPFFI) is proposed for simultaneously measuring relative humidity (RH) and temperature (T). Since the polymer is intrinsically highly sensitive to both RH and T, the polymer fiber Fizeau interferometer (PFFI) exhibits cross-sensitivity of RH and T. In general, it is difficult to demodulate the optical responses from both variations of RH and T using a single PFFI. If two PFFIs with different structures are combined, they will individually exhibit distinct sensitivity responses with respect to RH and T, respectively. The technical problem of analyzing multiple interferences of the optical spectra of the DPFFI and the individual sensitivity of RH and T to each PFFI is obtained using the fast Fourier transform (FFT). A mathematical method is applied to solve the simultaneous equations of the DPFFI, so that the two variables RH and T can be determined at the same time. Experimental results, indicating good sensitivity and accuracy, with small measurement errors (average errors of ~1.46 °C and ~1.48%, respectively), are shown, determining the feasibility, and verifying the effectiveness, of the proposed DPFFI sensor.

3.
Sensors (Basel) ; 17(9)2017 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-28869510

RESUMEN

This work proposes the first hot-polymer fiber Fabry-Perot interferometer (HPFFPI) anemometer for sensing airflow. The proposed HPFFPI is based on a single-mode fiber (SMF) endface that is attached to a UV-cured polymer to form an ultracompact fiber Fabry-Perot microcavity. The proposed polymer microcavity was heated using a low-cost chip resistor with a controllable dc driving power to achieve a desired polymer's steady-state temperature (T) that exceeds the T of the surrounding environment. The polymer is highly sensitive to variations of T with high repeatability. When the hot polymer was cooled by the measured flowing air, the wavelength fringes of its optical spectra shifted. The HPFFPI anemometers have been experimentally evaluated for different cavity lengths and heating power values. Experimental results demonstrate that the proposed HPFFPI responses well in terms of airflow measurement. A high sensitivity of 1.139 nm/(m/s) and a good resolution of 0.0088 m/s over the 0~2.54 m/s range of airflow were achieved with a cavity length of 10 µm and a heating power of 0.402 W.

4.
Micromachines (Basel) ; 14(1)2023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36677195

RESUMEN

Because of the worldwide trend of microgrid (MG) and renewable energy (RE)-based distributed power generation (DG), advanced power flow control schemes with wide bandgap (WBG) semiconductor technologies to ensure high-level performance of grid-connected MGs is one of the crucial research topics. In grid-connected MGs, a static switch (SS) is commonly used at the point of common coupling (PCC) of two systems. In this paper, the role of SS is replaced by a SiC-based three-phase back-to-back (BTB) inverter system for seamless switching between grid-connected and standalone modes through advanced power flow control schemes. According to scenarios of different grid/load conditions and available DG capacities in an MG, various advanced control functions can be developed for both MG operating modes: bidirectional control of active and reactive power flows, seamless switching between operating modes, improvement of grid power quality (PQ), and voltage stabilization. In this paper, mathematical models of the BTB inverter in a synchronous reference frame (SRF) is first derived, and the required controllers are then designed. For functional testing, two typical cases are simulated and analyzed in a MATLAB/Simulink environment and then verified through 1kVA small-scale hardware implementation with Texas Instruments (TI) digital signal processor (DSP) TMS320LF2812 as the control core. Results show satisfactory performances of power flow control and PQ improvement of MG.

5.
Micromachines (Basel) ; 14(10)2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37893395

RESUMEN

In recent years, the penetration of wind power generation has been growing steadily to adapt to the modern trend of boosting renewable energy (RE)-based power generation. However, the dynamic power flow of wind turbine generators (WTGs) is unpredictable and can have a negative impact on existing power grids. To solve this problem efficiently, this paper presents a multifunctional WTG intelligent compensator (WTGIC) for the advanced power management and compensation of power systems embedded with WTGs. The proposed WTGIC consists of a power semiconductor device (PSD)-based bidirectional three-phase inverter module and an energy storage unit (ESU). In order to reduce system costs and improve reliability, efficiency, and flexibility, various control functions and algorithms are integrated via a modularized all-digital control scheme. In this paper, the configuration of the proposed WTGIC is first introduced, and then the operating modes and related compensation and control functions are addressed. An online efficiency optimization algorithm is proposed, and the required controllers are designed and implemented. The designed functions of the proposed WTGIC include high-efficiency charging/discharging of the ESU, real-time power quality (PQ) compensation, and high-efficiency power smoothing of the WTGs. The feasibility and effectiveness of the proposed WTGIC are verified using case studies with simulations in the Powersim (PSIM) environment and the implementation of a small-scale hardware experimental system with TI's digital signal processor (DSP) TI28335 as the main controller.

6.
Micromachines (Basel) ; 14(4)2023 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-37421066

RESUMEN

In response to the rapid changes in the international energy environment, developing renewable energy (RE)-based distributed generation (DG) and various smart micro-grid systems is crucial for creating a robust electric power grid and new energy industries. In this aspect, there is an urgent need to develop hybrid power systems suitable for coexistent AC and DC power grids, integrated by high-performance wide ban gap (WBG) semiconductor-based power conversion interfaces and advanced operating and control strategies. Due to the intrinsic feature of variation in RE-based power generation, the design and integration of energy storage devices, real-time regulation of power flow, and intelligent energy control schemes are key technologies for further promoting DG systems and micro-grids. This paper investigates an integrated control scheme for multiple GaN-based power converters in a small- to medium-capacity, grid-connected, and RE-based power system. This is the first time that a complete design case demonstrating three GaN-based power converters with different control functions integrated with a single digital signal processor (DSP) chip to achieve a reliable, flexible, cost effective, and multifunctional power interface for renewable power generation systems is presented. The system studied includes a photovoltaic (PV) generation unit, a battery energy storage unit, a grid-connected single-phase inverter, and a power grid. Based on system operation condition and the state of charge (SOC) of the energy storage unit, two typical operating modes and advanced power control functions are developed with a fully digital and coordinated control scheme. Hardware of the GaN-based power converters and digital controllers are designed and implemented. The feasibility and effectiveness of the designed controllers and overall performance of the proposed control scheme are verified with results from simulation and experimental tests on a 1-kVA small-scale hardware system.

7.
Micromachines (Basel) ; 15(1)2023 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-38258150

RESUMEN

Fiber lasers are commonly used in many industrial applications, such as cutting, welding, marking, and additive manufacturing. In a fiber laser system, the driver of a pumping source using a laser diode (LD) module and its dynamic control capability directly affect the performance of the fiber laser system. The commercial design of pumping source drivers for high-power fiber lasers is mainly based on a linear-type DC power supply, which has two major drawbacks, i.e., lower efficiency and bulk. In this regard, this paper proposes for the first time a new design approach with a programmable switching mode laser diode driver using a power semiconductor device (PSD)-based full-bridge phase-shifted (FB-PS) DC-DC converter for driving a 200 W optical power laser diode module. In this paper, the characteristics of a laser diode module and the system configuration of the proposed laser diode driver are first introduced. Then, a current control scheme using the concept of phase angle shifting to achieve a fast dynamic current tracking feature is explained. The proposed current control technique with a fully digital control scheme is then addressed. Next, dynamic mathematical models of the laser diode driver system and controllers are derived, and the quantitative design detail of the controller is presented. To confirm the correctness of the proposed control scheme, a simulation study on a typical control case is performed in PSIM 9.1 software environment. To verify the effectiveness of the proposed LD driver, a digital signal processor is then used as the control core to construct a hardware prototype implementation for performing experimental tests. Results obtained from simulation and hardware tests show highly satisfactory driving performances in the laser diode's output current command tracking control.

8.
Polymers (Basel) ; 14(22)2022 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-36433093

RESUMEN

This paper presents a novel method based on a dual-cavity fiber Fabry-Pérot interferometer (DCFFPI) for simultaneously measuring the thermo-optic coefficient (TOC) and thermal expansion coefficient (TEC) of a polymer. The polymer is, by nature, highly responsive to temperature (T) in that its size (length, L) and refractive index (RI, n) are highly dependent on the thermal effect. When the optical length of the polymer cavity changes with T, it is difficult to distinguish whether there is a change in L or n, or both. The variation rates of L and n with a change in T were the TOC and TEC, respectively. Therefore, there was a cross-sensitivity between TOC and TEC in the polymer-based interferometer. The proposed DCFFPI, which cascades a polymer and an air cavity, can solve the above problem. The expansion of the polymer cavity is equal to the compression of the air cavity with the increase in T. By analyzing the individual optical spectra of the polymer and air cavities, the parameters of TOC and TEC can be determined at the same time. The simultaneous measurement of TOC and TEC with small measured deviations of 6 × 10-6 (°C-1) and 3.67 × 10-5 (°C-1) for the polymer NOA61 and 7 × 10-6 (°C-1) and 1.46 × 10-4 (°C-1) for the NOA65 can be achieved. Experimental results regarding the measured accuracy for the class of adhesive-based polymer are presented to demonstrate the feasibility and verify the usefulness of the proposed DCFFPI.

9.
Micromachines (Basel) ; 12(4)2021 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-33924185

RESUMEN

The modern trend of decarbonization has encouraged intensive research on renewable energy (RE)-based distributed power generation (DG) and smart grid, where advanced electronic power interfaces are necessary for connecting the generator with power grids and various electrical systems. On the other hand, modern technologies such as Industry 4.0 and electrical vehicles (EV) have higher requirements for power converters than that of conventional applications. Consequently, the enhancement of power interfaces will play an important role in the future power generation and distribution systems as well as various industrial applications. It has been discovered that wide-bandgap (WBG) switching devices such as gallium nitride (GaN) high electron mobility transistors (HEMTs) and silicon carbide (SiC) metal-oxide-semiconductor field-effect transistors (MOSFETs) offer considerable potential for outperforming conventional silicon (Si) switching devices in terms of breakdown voltage, high temperature capability, switching speed, and conduction losses. This paper investigates the performance of a 2kVA three-phase static synchronous compensator (STATCOM) based on a GaN HEMTs-based voltage-source inverter (VSI) and a neural network-based hybrid control scheme. The proportional-integral (PI) controllers along with a radial basis function neural network (RBFNN) controller for fast reactive power control are designed in synchronous reference frame (SRF). Both simulation and hardware implementation are conducted. Results confirm that the proposed RBFNN assisted hybrid control scheme yields excellent dynamic performance in terms of various reactive power tracking control of the GaN HEMTs-based three-phase STATCOM system.

10.
Micromachines (Basel) ; 13(1)2021 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-35056204

RESUMEN

As the penetration of renewable energy power generation, such as wind power generation, increases low voltage ride-through (LVRT), control is necessary during grid faults to support wind turbine generators (WTGs) in compensating reactive current to restore nominal grid voltages, and maintain a desired system stability. In contrast to the commonly used centralized LVRT controller, this study proposes a distributed control scheme using a LVRT compensator (LVRTC) capable of simultaneously performing reactive current compensation for doubly-fed induction generator (DFIG)-, or permanent magnet synchronous generator (PMSG)-based WTGs. The proposed LVRTC using silicon carbide (SiC)-based inverters can achieve better system efficiency, and increase system reliability. The proposed LVRTC adopts a digital control scheme and dq-axis current decoupling algorithm to realize simultaneous active/reactive power control features. Theoretical analysis, derivation of mathematical models, and design of the control scheme are initially conducted, and simulation is then performed in a computer software environment to validate the feasibility of the system. Finally, a 2 kVA small-scale hardware system with TI's digital signal processor (DSP) as the control core is implemented for experimental verification. Results from simulation and implementation are in close agreement, and validate the feasibility and effectiveness of the proposed control scheme.

11.
Micromachines (Basel) ; 12(1)2021 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-33430093

RESUMEN

Wide-bandgap (WBG) material-based switching devices such as gallium nitride (GaN) high electron mobility transistors (HEMTs) and silicon carbide (SiC) metal-oxide-semiconductor field-effect transistors (MOSFETs) are considered very promising candidates for replacing conventional silicon (Si) MOSFETs for various advanced power conversion applications, mainly because of their capabilities of higher switching frequencies with less switching and conduction losses. However, to make the most of their advantages, it is crucial to understand the intrinsic differences between WBG- and Si-based switching devices and investigate effective means to safely, efficiently, and reliably utilize the WBG devices. This paper aims to provide engineers in the power engineering field a comprehensive understanding of WBG switching devices' driving requirements, especially for mid- to high-power applications. First, the characteristics and operating principles of WBG switching devices and their commercial products within specific voltage ranges are explored. Next, considerations regarding the design of driving circuits for WBG switching devices are addressed, and commercial drivers designed for WBG switching devices are explored. Lastly, a review on typical papers concerning driving technologies for WBG switching devices in mid- to high-power applications is presented.

12.
Micromachines (Basel) ; 12(12)2021 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-34945437

RESUMEN

In order to efficiently facilitate various research works related to power converter design and testing for solar photovoltaic (PV) generation systems, it is a great merit to use advanced power-converter-based and digitally controlled PV emulators in place of actual PV modules to reduce the space, cost, and time to obtain the required scenarios of solar irradiances for various functional tests. This paper presents a flexible PV emulator based on gallium nitride (GaN), a wide-bandgap (WBG) semiconductor, and a based synchronous buck converter and controlled with a digital signal processor (DSP). With the help of GaN-based switching devices, the proposed emulator can accurately mimic the dynamic voltage-current characteristics of any PV module under normal irradiance and partial shading conditions. With the proposed PV emulator, it is possible to closely emulate any PV module characteristic both theoretically, based on manufacturer's datasheets, and experimentally, based on measured data from practical PV modules. A curve fitting algorithm is used to handle the real-time generation of control signals for the digital controller. Both simulation with computer software and implementation on 1 kW GaN-based experimental hardware using Texas Instruments DSP as the controller have been carried out. Results show that the proposed emulator achieves efficiency as high as 99.05% and exhibits multifaceted application features in tracking various PV voltage and current parameters, demonstrating the feasibility and excellent performance of the proposed PV emulator.

13.
Micromachines (Basel) ; 11(12)2020 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-33322774

RESUMEN

An energy storage system using secondary batteries combined with advanced power control schemes is considered the key technology for the sustainable development of renewable energy-based power generation and smart micro-grids. The performance of energy storage systems in practical application mainly depends on their power conditioning systems. This paper proposes a silicon carbide-based multifunctional power conditioning system for the vanadium redox flow battery. The proposed system is a two-stage circuit topology, including a three-phase grid-tie inverter that can perform four-quadrant control of active and reactive power and a bi-directional multi-channel direct current converter that is responsible for the fast charging and discharging control of the battery. To achieve the design objectives, i.e., high reliability, high efficiency, and high operational flexibility, silicon carbide-based switching devices, and advanced digital control schemes are used in the construction of a power conditioning system for the vanadium redox flow battery. This paper first describes the proposed system topologies and controller configurations and the design methods of controllers for each converter in detail, and then results from both simulation analyses and experimental tests on a 5 kVA hardware prototype are presented to verify the feasibility and effectiveness of the proposed system and the designed controllers.

14.
Micromachines (Basel) ; 11(2)2020 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-31991646

RESUMEN

Renewable energy (RE)-based power generation systems and modern manufacturing facilities utilize a wide variety of power converters based on high-frequency power electronic devices and complex switching technologies. This has resulted in a noticeable degradation in the power quality (PQ) of power systems. To solve the aforementioned problem, advanced active power filters (APFs) with improved system performance and properly designed switching devices and control algorithms can provide a promising solution because an APF can compensate for voltage sag, harmonic currents, current imbalance, and active and reactive powers individually or simultaneously. This paper demonstrates, for the first time, the detailed design procedure and performance of a digitally controlled 2 kVA three-phase shunt APF system using gallium nitride (GaN) high electron mobility transistors (HEMTs). The designed digital control scheme consists of three type II controllers with a digital signal processor (DSP) as the control core. Using the proposed APF and control algorithms, fast and accurate compensation for harmonics, imbalance, and reactive power is achieved in both simulation and hardware tests, demonstrating the feasibility and effectiveness of the proposed system. Moreover, GaN HEMTs allow the system to achieve up to 97.2% efficiency.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA