Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(48): e2209149119, 2022 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-36413498

RESUMEN

Intravacuolar pathogens need to gradually expand their surrounding vacuole to accommodate the growing number of bacterial offspring during intracellular replication. Here we found that Legionella pneumophila controls vacuole expansion by fine-tuning the generation of lysophospholipids within the vacuolar membrane. Upon allosteric activation by binding to host ubiquitin, the type IVB (Dot/Icm) effector VpdC converts phospholipids into lysophospholipids which, at moderate concentrations, are known to promote membrane fusion but block it at elevated levels by generating excessive positive membrane curvature. Consequently, L. pneumophila overproducing VpdC were prevented from adequately expanding their surrounding membrane, trapping the replicating bacteria within spatially confined vacuoles and reducing their capability to proliferate intracellularly. Quantitative lipidomics confirmed a VpdC-dependent increase in several types of lysophospholipids during infection, and VpdC production in transiently transfected cells caused tubulation of organelle membranes as well as mitochondria fragmentation, processes that can be phenocopied by supplying cells with exogenous lysophospholipids. Together, these results demonstrate an important role for bacterial phospholipases in vacuolar expansion.


Asunto(s)
Legionella , Enfermedad de los Legionarios , Humanos , Legionella/metabolismo , Vacuolas/metabolismo , Enfermedad de los Legionarios/microbiología , Fosfolipasas/metabolismo , Ubiquitina/metabolismo , Proteínas Bacterianas/metabolismo , Lisofosfolípidos/metabolismo
2.
Proc Natl Acad Sci U S A ; 117(25): 14433-14443, 2020 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-32513747

RESUMEN

During infection, the bacterial pathogen Legionella pneumophila manipulates a variety of host cell signaling pathways, including the Hippo pathway which controls cell proliferation and differentiation in eukaryotes. Our previous studies revealed that L. pneumophila encodes the effector kinase LegK7 which phosphorylates MOB1A, a highly conserved scaffold protein of the Hippo pathway. Here, we show that MOB1A, in addition to being a substrate of LegK7, also functions as an allosteric activator of its kinase activity. A crystallographic analysis of the LegK7-MOB1A complex revealed that the N-terminal half of LegK7 is structurally similar to eukaryotic protein kinases, and that MOB1A directly binds to the LegK7 kinase domain. Substitution of interface residues critical for complex formation abrogated allosteric activation of LegK7 both in vitro and within cells and diminished MOB1A phosphorylation. Importantly, the N-terminal extension (NTE) of MOB1A not only regulated complex formation with LegK7 but also served as a docking site for downstream substrates such as the transcriptional coregulator YAP1. Deletion of the NTE from MOB1A or addition of NTE peptides as binding competitors attenuated YAP1 recruitment to and phosphorylation by LegK7. By providing mechanistic insight into the formation and regulation of the LegK7-MOB1A complex, our study unravels a sophisticated molecular mimicry strategy that is used by L. pneumophila to take control of the host cell Hippo pathway.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Bacterianas/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Legionella pneumophila/metabolismo , Proteínas Quinasas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Regulación Alostérica , Animales , Proteínas Bacterianas/genética , Proteínas de Ciclo Celular/metabolismo , Células HEK293 , Interacciones Huésped-Patógeno , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Legionella pneumophila/patogenicidad , Enfermedad de los Legionarios/microbiología , Enfermedad de los Legionarios/patología , Macrófagos Alveolares/microbiología , Macrófagos Alveolares/patología , Ratones , Simulación de Dinámica Molecular , Imitación Molecular , Fosforilación , Unión Proteica , Proteínas Quinasas/genética , Células RAW 264.7 , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transducción de Señal , Factores de Transcripción/metabolismo , Proteínas Señalizadoras YAP
3.
PLoS Pathog ; 16(8): e1008734, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32853279

RESUMEN

AMPylation, the post-translational modification with adenosine monophosphate (AMP), is catalyzed by effector proteins from a variety of pathogens. Legionella pneumophila is thus far the only known pathogen that, in addition to encoding an AMPylase (SidM/DrrA), also encodes a deAMPylase, called SidD, that reverses SidM-mediated AMPylation of the vesicle transport GTPase Rab1. DeAMPylation is catalyzed by the N-terminal phosphatase-like domain of SidD. Here, we determined the crystal structure of full length SidD including the uncharacterized C-terminal domain (CTD). A flexible loop rich in aromatic residues within the CTD was required to target SidD to model membranes in vitro and to the Golgi apparatus within mammalian cells. Deletion of the loop (Δloop) or substitution of its aromatic phenylalanine residues rendered SidD cytosolic, showing that the hydrophobic loop is the primary membrane-targeting determinant of SidD. Notably, deletion of the two terminal alpha helices resulted in a CTD variant incapable of discriminating between membranes of different composition. Moreover, a L. pneumophila strain producing SidDΔloop phenocopied a L. pneumophila ΔsidD strain during growth in mouse macrophages and displayed prolonged co-localization of AMPylated Rab1 with LCVs, thus revealing that membrane targeting of SidD via its CTD is a critical prerequisite for its ability to catalyze Rab1 deAMPylation during L. pneumophila infection.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Membrana Celular/microbiología , Legionella pneumophila/enzimología , Enfermedad de los Legionarios/microbiología , Adenosina Monofosfato/metabolismo , Animales , Proteínas Bacterianas/genética , Femenino , Aparato de Golgi/metabolismo , Humanos , Legionella pneumophila/química , Legionella pneumophila/genética , Ratones , Dominios Proteicos
4.
PLoS Pathog ; 14(2): e1006897, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29415051

RESUMEN

The eukaryotic ubiquitylation machinery catalyzes the covalent attachment of the small protein modifier ubiquitin to cellular target proteins in order to alter their fate. Microbial pathogens exploit this post-translational modification process by encoding molecular mimics of E3 ubiquitin ligases, eukaryotic enzymes that catalyze the final step in the ubiquitylation cascade. Here, we show that the Legionella pneumophila effector protein RavN belongs to a growing class of bacterial proteins that mimic host cell E3 ligases to exploit the ubiquitylation pathway. The E3 ligase activity of RavN was located within its N-terminal region and was dependent upon interaction with a defined subset of E2 ubiquitin-conjugating enzymes. The crystal structure of the N-terminal region of RavN revealed a U-box-like motif that was only remotely similar to other U-box domains, indicating that RavN is an E3 ligase relic that has undergone significant evolutionary alteration. Substitution of residues within the predicted E2 binding interface rendered RavN inactive, indicating that, despite significant structural changes, the mode of E2 recognition has remained conserved. Using hidden Markov model-based secondary structure analyses, we identified and experimentally validated four additional L. pneumophila effectors that were not previously recognized to possess E3 ligase activity, including Lpg2452/SdcB, a new paralog of SidC. Our study provides strong evidence that L. pneumophila is dedicating a considerable fraction of its effector arsenal to the manipulation of the host ubiquitylation pathway.


Asunto(s)
Legionella pneumophila/enzimología , Ubiquitina-Proteína Ligasas/fisiología , Secuencia de Aminoácidos , Clonación Molecular , Células HEK293 , Humanos , Legionella pneumophila/genética , Enfermedad de los Legionarios/genética , Enfermedad de los Legionarios/microbiología , Modelos Moleculares , Conformación Proteica en Hélice alfa , Ubiquitina-Proteína Ligasas/química , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/aislamiento & purificación , Ubiquitinación/genética
5.
Proc Natl Acad Sci U S A ; 114(52): E11151-E11160, 2017 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-29229824

RESUMEN

Microbial pathogens employ sophisticated virulence strategies to cause infections in humans. The intracellular pathogen Legionella pneumophila encodes RidL to hijack the host scaffold protein VPS29, a component of retromer and retriever complexes critical for endosomal cargo recycling. Here, we determined the crystal structure of L. pneumophila RidL in complex with the human VPS29-VPS35 retromer subcomplex. A hairpin loop protruding from RidL inserts into a conserved pocket on VPS29 that is also used by cellular ligands, such as Tre-2/Bub2/Cdc16 domain family member 5 (TBC1D5) and VPS9-ankyrin repeat protein for VPS29 binding. Consistent with the idea of molecular mimicry in protein interactions, RidL outcompeted TBC1D5 for binding to VPS29. Furthermore, the interaction of RidL with retromer did not interfere with retromer dimerization but was essential for association of RidL with retromer-coated vacuolar and tubular endosomes. Our work thus provides structural and mechanistic evidence into how RidL is targeted to endosomal membranes.


Asunto(s)
Proteínas Bacterianas/química , Legionella pneumophila/química , Multimerización de Proteína , Factores de Virulencia/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Legionella pneumophila/genética , Legionella pneumophila/metabolismo , Legionella pneumophila/patogenicidad , Dominios Proteicos , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína , Proteínas de Transporte Vesicular/química , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo , Factores de Virulencia/genética , Factores de Virulencia/metabolismo
6.
J Cell Sci ; 130(12): 1985-1996, 2017 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-28476939

RESUMEN

Pathogenic bacteria are in a constant battle for survival with their host. In order to gain a competitive edge, they employ a variety of sophisticated strategies that allow them to modify conserved host cell processes in ways that favor bacterial survival and growth. Ubiquitylation, the covalent attachment of the small modifier ubiquitin to target proteins, is such a pathway. Ubiquitylation profoundly alters the fate of a myriad of cellular proteins by inducing changes in their stability or function, subcellular localization or interaction with other proteins. Given the importance of ubiquitylation in cell development, protein homeostasis and innate immunity, it is not surprising that this post-translational modification is exploited by a variety of effector proteins from microbial pathogens. Here, we highlight recent advances in our understanding of the many ways microbes take advantage of host ubiquitylation, along with some surprising deviations from the canonical theme. The lessons learned from the in-depth analyses of these host-pathogen interactions provide a fresh perspective on an ancient post-translational modification that we thought was well understood.This article is part of a Minifocus on Ubiquitin Regulation and Function. For further reading, please see related articles: 'Mechanisms of regulation and diversification of deubiquitylating enzyme function' by Pawel Leznicki and Yogesh Kulathu (J. Cell Sci.130, 1997-2006). 'Cell scientist to watch - Mads Gyrd-Hansen' (J. Cell Sci.130, 1981-1983).


Asunto(s)
Bacterias/enzimología , Fenómenos Fisiológicos Bacterianos , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina/metabolismo , Animales , Proteínas Bacterianas/metabolismo , Escherichia coli , Homeostasis , Interacciones Huésped-Patógeno , Humanos , Legionella , Ratones , Plantas/microbiología , Dominios Proteicos , Procesamiento Proteico-Postraduccional , Salmonella , Transducción de Señal , Nicotiana , Ubiquitinación , Virulencia , Xanthomonas campestris
7.
BMC Microbiol ; 18(1): 5, 2018 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-29433439

RESUMEN

BACKGROUND: The intracellular bacterial pathogen Legionella pneumophila proliferates in human alveolar macrophages, resulting in a severe pneumonia termed Legionnaires' disease. Throughout the course of infection, L. pneumophila remains enclosed in a specialized membrane compartment that evades fusion with lysosomes. The pathogen delivers over 300 effector proteins into the host cell, altering host pathways in a manner that sets the stage for efficient pathogen replication. The L. pneumophila effector protein AnkX targets host Rab GTPases and functions in preventing fusion of the Legionella-containing vacuole with lysosomes. However, the current understanding of AnkX's interaction with host proteins and the means through which it exerts its cellular function is limited. RESULTS: Here, we investigated the protein interaction network of AnkX by using the nucleic acid programmable protein array (NAPPA), a high-density platform comprising 10,000 unique human ORFs. This approach facilitated the discovery of PLEKHN1 as a novel interaction partner of AnkX. We confirmed this interaction through multiple independent in vitro pull-down, co-immunoprecipitation, and cell-based assays. Structured illumination microscopy revealed that endogenous PLEKHN1 is found in the nucleus and on vesicular compartments, whereas ectopically produced AnkX co-localized with lipid rafts at the plasma membrane. In mammalian cells, HaloTag-AnkX co-localized with endogenous PLEKHN1 on vesicular compartments. A central fragment of AnkX (amino acids 491-809), containing eight ankyrin repeats, extensively co-localized with endogenous PLEKHN1, indicating that this region may harbor a new function. Further, we found that PLEKHN1 associated with multiple proteins involved in the inflammatory response. CONCLUSIONS: Altogether, our study provides evidence that in addition to Rab GTPases, the L. pneumophila effector AnkX targets nuclear host proteins and suggests that AnkX may have novel functions related to manipulating the inflammatory response.


Asunto(s)
Repetición de Anquirina/fisiología , Proteínas Bacterianas/metabolismo , Interacciones Huésped-Patógeno/fisiología , Legionella pneumophila/metabolismo , Enfermedad de los Legionarios/metabolismo , Proteínas Ligadas a Lípidos/metabolismo , Repetición de Anquirina/genética , Membrana Celular/metabolismo , Endocitosis/fisiología , Células HEK293 , Células HeLa , Humanos , Legionella pneumophila/patogenicidad , Lisosomas/metabolismo , Macrófagos/microbiología , Proteínas Nucleares , Proteínas Recombinantes , Vacuolas/metabolismo , Proteínas de Unión al GTP rab/metabolismo
9.
Proc Natl Acad Sci U S A ; 111(12): 4560-5, 2014 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-24616501

RESUMEN

A crucial step in the elimination of invading microbes by macrophages is phagosomal maturation through heterotypic endosomal fusion. This process is controlled by the guanine nucleotide binding protein Rab5, which assembles protein microdomains that include the tethering protein early endosomal antigen (EEA) 1 and the phosphatidylinositol (PI) 3-kinase hVps34, which generates PI(3)P, a phospholipid required for membrane association of EEA1 and other fusion factors. During infection of macrophages, the pathogen Legionella pneumophila bypasses the microbicidal endosomal compartment by an unknown mechanism. Here, we show that the effector protein VipD from L. pneumophila exhibits phospholipase A1 activity that is activated only upon binding to endosomal Rab5 or Rab22. Within mammalian cells, VipD localizes to endosomes and catalyzes the removal of PI(3)P from endosomal membranes. EEA1 and other transport and fusion factors are consequently depleted from endosomes, rendering them fusion-incompetent. During host cell infection, VipD reduces exposure of L. pneumophila to the endosomal compartment and protects their surrounding vacuoles from acquiring Rab5. Thus, by catalyzing PI(3)P depletion in a Rab5-dependent manner, VipD alters the protein composition of endosomes thereby blocking fusion with Legionella-containing vacuoles.


Asunto(s)
Endosomas/fisiología , Legionella pneumophila/fisiología , Fusión de Membrana , Fosfolipasas A1/fisiología , Proteínas de Unión al GTP rab5/fisiología , Secuencia de Aminoácidos , Datos de Secuencia Molecular , Fosfolipasas A1/química , Homología de Secuencia de Aminoácido , Proteínas de Unión al GTP rab5/química
10.
Proc Natl Acad Sci U S A ; 111(34): E3514-23, 2014 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-25114243

RESUMEN

A challenge for microbial pathogens is to assure that their translocated effector proteins target only the correct host cell compartment during infection. The Legionella pneumophila effector vacuolar protein sorting inhibitor protein D (VipD) localizes to early endosomal membranes and alters their lipid and protein composition, thereby protecting the pathogen from endosomal fusion. This process requires the phospholipase A1 (PLA1) activity of VipD that is triggered specifically on VipD binding to the host cell GTPase Rab5, a key regulator of endosomes. Here, we present the crystal structure of VipD in complex with constitutively active Rab5 and reveal the molecular mechanism underlying PLA1 activation. An active site-obstructing loop that originates from the C-terminal domain of VipD is repositioned on Rab5 binding, thereby exposing the catalytic pocket within the N-terminal PLA1 domain. Substitution of amino acid residues located within the VipD-Rab5 interface prevented Rab5 binding and PLA1 activation and caused a failure of VipD mutant proteins to target to Rab5-enriched endosomal structures within cells. Experimental and computational analyses confirmed an extended VipD-binding interface on Rab5, explaining why this L. pneumophila effector can compete with cellular ligands for Rab5 binding. Together, our data explain how the catalytic activity of a microbial effector can be precisely linked to its subcellular localization.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Legionella pneumophila/enzimología , Fosfolipasas A1/química , Fosfolipasas A1/metabolismo , Proteínas de Transporte Vesicular/química , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Unión al GTP rab5/química , Proteínas de Unión al GTP rab5/metabolismo , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Proteínas Bacterianas/genética , Unión Competitiva , Dominio Catalítico , Cristalografía por Rayos X , Endosomas/metabolismo , Interacciones Huésped-Patógeno , Humanos , Legionella pneumophila/genética , Legionella pneumophila/patogenicidad , Modelos Moleculares , Simulación de Dinámica Molecular , Datos de Secuencia Molecular , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Mutagénesis Sitio-Dirigida , Fosfolipasas A1/genética , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Estructura Cuaternaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homología de Secuencia de Aminoácido , Proteínas de Transporte Vesicular/genética , Proteínas de Unión al GTP rab5/genética
11.
J Biol Chem ; 290(42): 25766-81, 2015 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-26316537

RESUMEN

The facultative intracellular pathogen Legionella pneumophila, the causative agent of Legionnaires disease, infects and replicates within human alveolar macrophages. L. pneumophila delivers almost 300 effector proteins into the besieged host cell that alter signaling cascades and create conditions that favor intracellular bacterial survival. In order for the effectors to accomplish their intracellular mission, their activity needs to be specifically directed toward the correct host cell protein or target organelle. Here, we show that the L. pneumophila effector GobX possesses E3 ubiquitin ligase activity that is mediated by a central region homologous to mammalian U-box domains. Furthermore, we demonstrate that GobX exploits host cell S-palmitoylation to specifically localize to Golgi membranes. The hydrophobic palmitate moiety is covalently attached to a cysteine residue at position 175, which is part of an amphipathic α-helix within the C-terminal region of GobX. Site-directed mutagenesis of cysteine 175 or residues on the hydrophobic face of the amphipathic helix strongly attenuated palmitoylation and Golgi localization of GobX. Together, our study provides evidence that the L. pneumophila effector GobX exploits two post-translational modification pathways of host cells, ubiquitination and S-palmitoylation.


Asunto(s)
Aparato de Golgi/metabolismo , Legionella pneumophila/enzimología , Ubiquitina-Proteína Ligasas/metabolismo , Biocatálisis , Transporte de Proteínas
12.
J Proteome Res ; 14(4): 1920-36, 2015 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-25739981

RESUMEN

Host-pathogen protein interactions are fundamental to every microbial infection, yet their identification has remained challenging due to the lack of simple detection tools that avoid abundance biases while providing an open format for experimental modifications. Here, we applied the Nucleic Acid-Programmable Protein Array and a HaloTag-Halo ligand detection system to determine the interaction network of Legionella pneumophila effectors (SidM and LidA) with 10 000 unique human proteins. We identified known targets of these L. pneumophila proteins and potentially novel interaction candidates. In addition, we applied our Click chemistry-based NAPPA platform to identify the substrates for SidM, an effector with an adenylyl transferase domain that catalyzes AMPylation (adenylylation), the covalent addition of adenosine monophosphate (AMP). We confirmed a subset of the novel SidM and LidA targets in independent in vitro pull-down and in vivo cell-based assays, and provided further insight into how these effectors may discriminate between different host Rab GTPases. Our method circumvents the purification of thousands of human and pathogen proteins, and does not require antibodies against or prelabeling of query proteins. This system is amenable to high-throughput analysis of effectors from a wide variety of human pathogens that may bind to and/or post-translationally modify targets within the human proteome.


Asunto(s)
Proteínas Bacterianas/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Interacciones Huésped-Patógeno/fisiología , Legionella pneumophila/metabolismo , Análisis por Matrices de Proteínas/métodos , Proteínas/metabolismo , Cartilla de ADN/genética , ADN Complementario/genética , Humanos , Microscopía Fluorescente , Plásmidos/genética , Especificidad de la Especie , Proteínas de Unión al GTP rab/metabolismo
13.
PLoS Pathog ; 9(5): e1003382, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23696742

RESUMEN

The covalent attachment of adenosine monophosphate (AMP) to proteins, a process called AMPylation (adenylylation), has recently emerged as a novel theme in microbial pathogenesis. Although several AMPylating enzymes have been characterized, the only known virulence protein with de-AMPylation activity is SidD from the human pathogen Legionella pneumophila. SidD de-AMPylates mammalian Rab1, a small GTPase involved in secretory vesicle transport, thereby targeting the host protein for inactivation. The molecular mechanisms underlying Rab1 recognition and de-AMPylation by SidD are unclear. Here, we report the crystal structure of the catalytic region of SidD at 1.6 Å resolution. The structure reveals a phosphatase-like fold with additional structural elements not present in generic PP2C-type phosphatases. The catalytic pocket contains a binuclear metal-binding site characteristic of hydrolytic metalloenzymes, with strong dependency on magnesium ions. Subsequent docking and molecular dynamics simulations between SidD and Rab1 revealed the interface contacts and the energetic contribution of key residues to the interaction. In conjunction with an extensive structure-based mutational analysis, we provide in vivo and in vitro evidence for a remarkable adaptation of SidD to its host cell target Rab1 which explains how this effector confers specificity to the reaction it catalyses.


Asunto(s)
Adenosina Monofosfato/química , Proteínas Bacterianas/química , Legionella pneumophila/enzimología , Simulación del Acoplamiento Molecular , Proteínas de Unión al GTP rab1/química , Adenosina Monofosfato/genética , Adenosina Monofosfato/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Cristalografía por Rayos X , Humanos , Legionella pneumophila/genética , Fosfoproteínas Fosfatasas/química , Fosfoproteínas Fosfatasas/genética , Fosfoproteínas Fosfatasas/metabolismo , Proteína Fosfatasa 2C , Estructura Cuaternaria de Proteína , Relación Estructura-Actividad , Proteínas de Unión al GTP rab1/genética , Proteínas de Unión al GTP rab1/metabolismo
14.
Cell Rep ; 43(4): 114033, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38568811

RESUMEN

Small GTPases of the Ras subfamily are best known for their role as proto-oncoproteins, while their function during microbial infection has remained elusive. Here, we show that Legionella pneumophila hijacks the small GTPase NRas to the Legionella-containing vacuole (LCV) surface. A CRISPR interference screen identifies a single L. pneumophila effector, DenR (Lpg1909), required for this process. Recruitment is specific for NRas, while its homologs KRas and HRas are excluded from LCVs. The C-terminal hypervariable tail of NRas is sufficient for recruitment, and interference with either NRas farnesylation or S-acylation sites abrogates recruitment. Intriguingly, we detect markers of active NRas signaling on the LCV, suggesting it acts as a signaling platform. Subsequent phosphoproteomics analyses show that DenR rewires the host NRas signaling landscape, including dampening of the canonical mitogen-activated protein kinase pathway. These results provide evidence for L. pneumophila targeting NRas and suggest a link between NRas GTPase signaling and microbial infection.


Asunto(s)
Proteínas Bacterianas , GTP Fosfohidrolasas , Legionella pneumophila , Sistema de Señalización de MAP Quinasas , Proteínas de la Membrana , Legionella pneumophila/metabolismo , Legionella pneumophila/patogenicidad , Humanos , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , GTP Fosfohidrolasas/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Regulación hacia Abajo , Células HEK293 , Enfermedad de los Legionarios/microbiología , Enfermedad de los Legionarios/metabolismo , Vacuolas/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/genética
15.
Infect Immun ; 81(6): 2226-35, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23569112

RESUMEN

When the bacterium Legionella pneumophila, the causative agent of Legionnaires' disease, is phagocytosed by alveolar macrophages, it delivers a large number of effector proteins through its Dot/Icm type IV secretion system into the host cell cytosol. Among those proteins is LidA, an effector that interacts with several host GTPases of the Rab family, including Rab6A', a regulator of retrograde vesicle trafficking within eukaryotic cells. The effect of LidA on Rab6A' function and the role of Rab6A' for L. pneumophila growth within host cells has been unclear. Here, we show that LidA preferentially binds Rab6A' in the active GTP-bound conformation. Rab6 binding occurred through the central region of LidA and followed a stoichiometry for LidA and Rab6A' of 1:2. LidA maintained Rab6A' in the active conformation by efficiently blocking the hydrolysis of GTP by Rab6A', even in the presence of cellular GTPase-activating proteins, suggesting that the function of Rab6A' must be important for efficient intracellular replication of L. pneumophila. Accordingly, we found that production of constitutively inactive Rab6A'(T27N) but not constitutively active Rab6A'(Q72L) significantly reduced the ability of L. pneumophila to initiate intracellular replication in human macrophages. Thus, the presence of an active pool of Rab6 within host cells early during infection is required to support efficient intracellular growth of L. pneumophila.


Asunto(s)
Proteínas Bacterianas/metabolismo , Legionella pneumophila/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Línea Celular , Guanosina Trifosfato/genética , Guanosina Trifosfato/metabolismo , Humanos , Macrófagos/microbiología , Unión Proteica
16.
Elife ; 122023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38095310

RESUMEN

Identifying virulence-critical genes from pathogens is often limited by functional redundancy. To rapidly interrogate the contributions of combinations of genes to a biological outcome, we have developed a multiplex, randomized CRISPR interference sequencing (MuRCiS) approach. At its center is a new method for the randomized self-assembly of CRISPR arrays from synthetic oligonucleotide pairs. When paired with PacBio long-read sequencing, MuRCiS allowed for near-comprehensive interrogation of all pairwise combinations of a group of 44 Legionella pneumophila virulence genes encoding highly conserved transmembrane proteins for their role in pathogenesis. Both amoeba and human macrophages were challenged with L. pneumophila bearing the pooled CRISPR array libraries, leading to the identification of several new virulence-critical combinations of genes. lpg2888 and lpg3000 were particularly fascinating for their apparent redundant functions during L. pneumophila human macrophage infection, while lpg3000 alone was essential for L. pneumophila virulence in the amoeban host Acanthamoeba castellanii. Thus, MuRCiS provides a method for rapid genetic examination of even large groups of redundant genes, setting the stage for application of this technology to a variety of biological contexts and organisms.


Asunto(s)
Acanthamoeba castellanii , Legionella pneumophila , Enfermedad de los Legionarios , Humanos , Macrófagos , Legionella pneumophila/metabolismo , Acanthamoeba castellanii/genética , Virulencia/genética , Proteínas Bacterianas/metabolismo
17.
bioRxiv ; 2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-36945652

RESUMEN

Identifying virulence-critical genes from pathogens is often limited by functional redundancy. To rapidly interrogate the contributions of combinations of genes to a biological outcome, we have developed a multiplex, randomized CRISPR interference sequencing (MuRCiS) approach. At its center is a new method for the randomized self-assembly of CRISPR arrays from synthetic oligonucleotide pairs. When paired with PacBio long-read sequencing, MuRCiS allowed for near-comprehensive interrogation of all pairwise combinations of a group of 44 Legionella pneumophila virulence genes encoding highly conserved transmembrane proteins for their role in pathogenesis. Both amoeba and human macrophages were challenged with L. pneumophila bearing the pooled CRISPR array libraries, leading to the identification of several new virulence-critical combinations of genes. lpg2888 and lpg3000 were particularly fascinating for their apparent redundant functions during L. pneumophila human macrophage infection, while lpg3000 alone was essential for L. pneumophila virulence in the amoeban host Acanthamoeba castellanii. Thus, MuRCiS provides a method for rapid genetic examination of even large groups of redundant genes, setting the stage for application of this technology to a variety of biological contexts and organisms.

18.
J Bacteriol ; 194(6): 1389-400, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22228731

RESUMEN

Legionella pneumophila, the causative agent of a severe pneumonia known as Legionnaires' disease, intercepts material from host cell membrane transport pathways to create a specialized vacuolar compartment that supports bacterial replication. Delivery of bacterial effector proteins into the host cell requires the Dot/Icm type IV secretion system. Several effectors, including SidM, SidD, and LepB, were shown to target the early secretory pathway by manipulating the activity of the host GTPase Rab1. While the function of these effectors has been well characterized, the role of another Rab1-interacting protein from L. pneumophila, the effector protein LidA, is poorly understood. Here, we show that LidA binding to Rab1 stabilized the Rab1-guanosine nucleotide complex, protecting it from inactivation by GTPase-activating proteins (GAPs) and from nucleotide extraction. The protective effect of LidA on the Rab1-guanine nucleotide complex was concentration dependent, consistent with a 1:1 stoichiometry of the LidA-Rab1 complex. The central coiled-coil region of LidA was sufficient for Rab1 binding and to prevent GAP-mediated inactivation or nucleotide extraction from Rab1. In addition, the central region mediated binding to phosphatidylinositol 3-phosphate and other phosphoinositides. When bound to Rab1, LidA interfered with the covalent modification of Rab1 by phosphocholination or AMPylation, and it also blocked de-AMPylation of Rab1 by SidD and dephosphocholination by Lem3. Based on these findings, we propose a role for LidA in bridging the membrane of the Legionella-containing vacuole (LCV) with that of secretory transport vesicles surrounding the LCV.


Asunto(s)
Proteínas Bacterianas/metabolismo , Interacciones Huésped-Patógeno , Legionella pneumophila/patogenicidad , Nucleótidos/metabolismo , Factores de Virulencia/metabolismo , Proteínas de Unión al GTP rab1/metabolismo , Línea Celular , Humanos , Macrófagos/microbiología , Mapeo de Interacción de Proteínas
19.
mBio ; 13(2): e0024022, 2022 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-35258332

RESUMEN

Bacterial type IV secretion systems (T4SSs) are macromolecular machines that translocate effector proteins across multiple membranes into infected host cells. Loss of function mutations in genes encoding protein components of the T4SS render bacteria avirulent, highlighting the attractiveness of T4SSs as drug targets. Here, we designed an automated high-throughput screening approach for the identification of compounds that interfere with the delivery of a reporter-effector fusion protein from Legionella pneumophila into RAW264.7 mouse macrophages. Using a fluorescence resonance energy transfer (FRET)-based detection assay in a bacteria/macrophage coculture format, we screened a library of over 18,000 compounds and, upon vetting compound candidates in a variety of in vitro and cell-based secondary screens, isolated several hits that efficiently interfered with biological processes that depend on a functional T4SS, such as intracellular bacterial proliferation or lysosomal avoidance, but had no detectable effect on L. pneumophila growth in culture medium, conditions under which the T4SS is dispensable. Notably, the same hit compounds also attenuated, to varying degrees, effector delivery by the closely related T4SS from Coxiella burnetii, notably without impacting growth of this organism within synthetic media. Together, these results support the idea that interference with T4SS function is a possible therapeutic intervention strategy, and the emerging compounds provide tools to interrogate at a molecular level the regulation and dynamics of these virulence-critical translocation machines. IMPORTANCE Multi-drug-resistant pathogens are an emerging threat to human health. Because conventional antibiotics target not only the pathogen but also eradicate the beneficial microbiota, they often cause additional clinical complications. Thus, there is an urgent need for the development of "smarter" therapeutics that selectively target pathogens without affecting beneficial commensals. The bacterial type IV secretion system (T4SS) is essential for the virulence of a variety of pathogens but dispensable for bacterial viability in general and can, thus, be considered a pathogen's Achilles heel. By identifying small molecules that interfere with cargo delivery by the T4SS from two important human pathogens, Legionella pneumophila and Coxiella burnetii, our study represents the first step in our pursuit toward precision medicine by developing pathogen-selective therapeutics capable of treating the infections without causing harm to commensal bacteria.


Asunto(s)
Coxiella burnetii , Legionella pneumophila , Animales , Sistemas de Secreción Bacterianos/metabolismo , Legionella pneumophila/metabolismo , Ratones , Sistemas de Secreción Tipo IV/genética , Sistemas de Secreción Tipo IV/metabolismo , Factores de Virulencia/genética
20.
Dev Cell ; 11(1): 47-56, 2006 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16824952

RESUMEN

The intracellular pathogen Legionella pneumophila replicates in a vacuole that recruits material from the host cell endoplasmic reticulum (ER). Biogenesis of this unique vacuole depends on the bacterial Dot/Icm type IV secretion system that translocates proteins across host cell membranes. Here, we show that two translocated substrates, SidM and LidA, target host cell Rab1, a small GTPase regulating ER-to-Golgi traffic. SidM is a guanosine nucleotide exchange factor for Rab1 that recruits Rab1 to Legionella-containing vacuoles, a process that is enhanced by LidA. Expression of sidM in mammalian cells interferes with the secretory pathway and causes Golgi fragmentation. Consistent with a collaborative relationship between the two proteins, immobilized SidM and LidA synergize to promote Rab1-dependent binding of early secretory vesicles. These results indicate that proteins translocated into the host cell by the intravacuolar pathogen L. pneumophila are able to recapitulate events involved in host secretory trafficking.


Asunto(s)
Legionella pneumophila/patogenicidad , Proteínas de Unión al GTP rab/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Secuencia de Bases , Transporte Biológico Activo , Línea Celular , ADN Bacteriano/genética , Genes Bacterianos , Humanos , Legionella pneumophila/genética , Legionella pneumophila/metabolismo , Microscopía Electrónica , Mutación , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Vacuolas/enzimología , Vacuolas/microbiología , Proteínas de Unión al GTP rab/genética , Proteínas de Unión al GTP rab1/genética , Proteínas de Unión al GTP rab1/metabolismo , Proteína de Unión al GTP rab2/genética , Proteína de Unión al GTP rab2/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA