Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
Más filtros

Intervalo de año de publicación
1.
Genomics ; 116(2): 110802, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38290593

RESUMEN

Understanding vertebral bone development is essential to prevent skeletal malformations in farmed fish related to genetic and environmental factors. This is an important issue in Solea senegalensis, with special impact of spinal anomalies in postlarval and juvenile stages. Vertebral bone transcriptomics in farmed fish mainly comes from coding genes, and barely on miRNA expression. Here, we used RNA-seq of spinal samples to obtain the first comprehensive coding and miRNA transcriptomic repertoire for postlarval and juvenile vertebral bone, covering different vertebral phenotypes and egg-incubation temperatures related to skeleton health in S. senegalensis. Coding genes, miRNA and pathways regulating bone development and growth were identified. Differential transcriptomic profiles and suggestive mRNA-miRNA interactions were found between postlarvae and juveniles. Bone-related genes and functions were associated with the extracellular matrix, development and regulatory processes, calcium binding, retinol and lipid metabolism or response to stimulus, including those revealed by the miRNA targets related to signaling, cellular and metabolic processes, growth, cell proliferation and biological adhesion. Pathway enrichment associated with fish skeleton were identified when comparing postlarvae and juveniles: growth and bone development functions in postlarvae, while actin cytoskeleton, focal adhesion and proteasome related to bone remodeling in juveniles. The transcriptome data disclosed candidate coding and miRNA gene markers related to bone cell processes, references for functional studies of the anosteocytic bone of S. senegalensis. This study establishes a broad transcriptomic foundation to study healthy and anomalous spines under early thermal conditions across life-stages in S. senegalensis, and for comparative analysis of skeleton homeostasis and pathology in fish and vertebrates.


Asunto(s)
Peces Planos , MicroARNs , Animales , Transcriptoma , MicroARNs/genética , Columna Vertebral/anomalías , Columna Vertebral/patología , Huesos , Peces Planos/genética
2.
Cell Tissue Res ; 397(3): 215-239, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39112611

RESUMEN

Chemical communication through olfaction is crucial for fish behaviours, mediating in socio-sexual behaviours as reproduction. Turbot, a flatfish with significant aquaculture production, possesses a well-developed olfactory system from early developmental stages. After metamorphosis, flatfish acquire their characteristic bilateral asymmetry with an ocular side facing the open water column, housing the dorsal olfactory rosette, and a blind side in contact with the sea bottom where the ventral rosette is located. This study aimed to address the existing gap in specific histological, ultrastructural, lectin-histochemical and immunohistochemical studies of the turbot olfactory rosettes and olfactory bulbs. We examined microdissected olfactory organs of adult turbots and premetamorphic larvae by using routine histological staining techniques, and a wide array of lectins and primary antibodies against G-proteins and calcium-binding proteins. We observed no discernible structural variations in the olfactory epithelium between rosettes, except for the dorsal rosette being larger in size compared to the ventral rosette. Additionally, the use of transmission electron microscopy significantly improved the characterization of the adult olfactory epithelium, exhibiting high cell density, small cell size, and a wide diversity of cell types. Moreover, specific immunopositivity in sensory and non-sensory cells provided us of essential information regarding their olfactory roles. The results obtained significantly enriched the scarce morphological and neurochemical information available on the turbot olfactory system, revealing a highly complex olfactory epithelium with distinct features compared to other teleost species, especially with regard to olfactory cell distribution and immunolabelling patterns.


Asunto(s)
Peces Planos , Inmunohistoquímica , Lectinas , Bulbo Olfatorio , Animales , Peces Planos/metabolismo , Lectinas/metabolismo , Bulbo Olfatorio/ultraestructura , Bulbo Olfatorio/metabolismo , Mucosa Olfatoria/ultraestructura , Mucosa Olfatoria/metabolismo
3.
Heredity (Edinb) ; 131(4): 292-305, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37596415

RESUMEN

Knowledge of genetic structure at the finest level is essential for the conservation of genetic resources. Despite no visible barriers limiting gene flow, significant genetic structure has been shown in marine species. The common cockle (Cerastoderma edule) is a bivalve of great commercial and ecological value inhabiting the Northeast Atlantic Ocean. Previous population genomics studies demonstrated significant structure both across the Northeast Atlantic, but also within small geographic areas, highlighting the need to investigate fine-scale structuring. Here, we analysed two geographic areas that could represent opposite models of structure for the species: (1) the SW British Isles region, highly fragmented due to biogeographic barriers, and (2) Galicia (NW Spain), a putative homogeneous region. A total of 9250 SNPs genotyped by 2b-RAD on 599 individuals from 22 natural beds were used for the analysis. The entire SNP dataset mostly confirmed previous observations related to genetic diversity and differentiation; however, neutral and divergent SNP outlier datasets enabled disentangling physical barriers from abiotic environmental factors structuring both regions. While Galicia showed a homogeneous structure, the SW British Isles region was split into four reliable genetic regions related to oceanographic features and abiotic factors, such as sea surface salinity and temperature. The information gathered supports specific management policies of cockle resources in SW British and Galician regions also considering their particular socio-economic characteristics; further, these new data will be added to those recently reported in the Northeast Atlantic to define sustainable management actions across the whole distribution range of the species.


Asunto(s)
Cardiidae , Humanos , Animales , Océano Atlántico , España , Genotipo , Estructuras Genéticas
4.
Genomics ; 113(4): 1705-1718, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33838278

RESUMEN

BACKGROUND: Understanding sex determination (SD) across taxa is a major challenge for evolutionary biology. The new genomic tools are paving the way to identify genomic features underlying SD in fish, a group frequently showing limited sex chromosome differentiation and high SD evolutionary turnover. Turbot (Scophthalmus maximus) is a commercially important flatfish with an undifferentiated ZW/ZZ SD system and remarkable sexual dimorphism. Here we describe a new long-read turbot genome assembly used to disentangle the genetic architecture of turbot SD by combining genomics and classical genetics approaches. RESULTS: The new turbot genome assembly consists of 145 contigs (N50 = 22.9 Mb), 27 of them representing >95% of its estimated genome size. A genome wide association study (GWAS) identified a ~ 6.8 Mb region on chromosome 12 associated with sex in 69.4% of the 36 families analyzed. The highest associated markers flanked sox2, the only gene in the region showing differential expression between sexes before gonad differentiation. A single SNP showed consistent differences between Z and W chromosomes. The analysis of a broad sample of families suggested the presence of additional genetic and/or environmental factors on turbot SD. CONCLUSIONS: The new chromosome-level turbot genome assembly, one of the most contiguous fish assemblies to date, facilitated the identification of sox2 as a consistent candidate gene putatively driving SD in this species. This chromosome SD system barely showed any signs of differentiation, and other factors beyond the main QTL seem to control SD in a certain proportion of families.


Asunto(s)
Peces Planos , Estudio de Asociación del Genoma Completo , Factores de Transcripción SOXB1 , Animales , Mapeo Cromosómico , Cromosomas , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Peces Planos/genética , Genoma , Factores de Transcripción SOXB1/genética , Factores de Transcripción SOXB1/metabolismo
5.
Int J Mol Sci ; 23(10)2022 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-35628170

RESUMEN

The Pleuronectiformes order, which includes several commercially-important species, has undergone extensive chromosome evolution. One of these species is Solea senegalensis, a flatfish with 2n = 42 chromosomes. In this study, a cytogenomics approach and integration with previous maps was applied to characterize the karyotype of the species. Synteny analysis of S. senegalensis was carried out using two flatfish as a reference: Cynoglossus semilaevis and Scophthalmus maximus. Most S. senegalensis chromosomes (or chromosome arms for metacentrics and submetacentrics) showed a one-to-one macrosyntenic pattern with the other two species. In addition, we studied how repetitive sequences could have played a role in the evolution of S. senegalensis bi-armed (3, and 5-9) and acrocentric (11, 12 and 16) chromosomes, which showed the highest rearrangements compared with the reference species. A higher abundance of TEs (Transposable Elements) and other repeated elements was observed adjacent to telomeric regions on chromosomes 3, 7, 9 and 16. However, on chromosome 11, a greater abundance of DNA transposons was detected in interstitial BACs. This chromosome is syntenic with several chromosomes of the other two flatfish species, suggesting rearrangements during its evolution. A similar situation was also found on chromosome 16 (for microsatellites and low complexity sequences), but not for TEs (retroelements and DNA transposons). These differences in the distribution and abundance of repetitive elements in chromosomes that have undergone remodeling processes during the course of evolution also suggest a possible role for simple repeat sequences in rearranged regions.


Asunto(s)
Elementos Transponibles de ADN , Peces Planos , Animales , Peces Planos/genética , Cariotipo , Cariotipificación , Sintenía/genética
6.
BMC Genomics ; 22(1): 150, 2021 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-33653268

RESUMEN

BACKGROUND: The irruption of Next-generation sequencing (NGS) and restriction site-associated DNA sequencing (RAD-seq) in the last decade has led to the identification of thousands of molecular markers and their genotyping for refined genomic screening. This approach has been especially useful for non-model organisms with limited genomic resources. Many building-loci pipelines have been developed to obtain robust single nucleotide polymorphism (SNPs) genotyping datasets using a de novo RAD-seq approach, i.e. without reference genomes. Here, the performances of two building-loci pipelines, STACKS 2 and Meyer's 2b-RAD v2.1 pipeline, were compared using a diverse set of aquatic species representing different genomic and/or population structure scenarios. Two bivalve species (Manila clam and common edible cockle) and three fish species (brown trout, silver catfish and small-spotted catshark) were studied. Four SNP panels were evaluated in each species to test both different building-loci pipelines and criteria for SNP selection. Furthermore, for Manila clam and brown trout, a reference genome approach was used as control. RESULTS: Despite different outcomes were observed between pipelines and species with the diverse SNP calling and filtering steps tested, no remarkable differences were found on genetic diversity and differentiation within species with the SNP panels obtained with a de novo approach. The main differences were found in brown trout between the de novo and reference genome approaches. Genotyped vs missing data mismatches were the main genotyping difference detected between the two building-loci pipelines or between the de novo and reference genome comparisons. CONCLUSIONS: Tested building-loci pipelines for selection of SNP panels seem to have low influence on population genetics inference across the diverse case-study scenarios here studied. However, preliminary trials with different bioinformatic pipelines are suggested to evaluate their influence on population parameters according with the specific goals of each study.


Asunto(s)
Metagenómica , Polimorfismo de Nucleótido Simple , Animales , Benchmarking , Genoma , Análisis de Secuencia de ADN
7.
Genet Sel Evol ; 53(1): 85, 2021 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-34742227

RESUMEN

BACKGROUND: The high fecundity of fish species allows intense selection to be practised and therefore leads to fast genetic gains. Based on this, numerous selective breeding programmes have been started in Europe in the last decades, but in general, little is known about how the base populations of breeders have been built. Such knowledge is important because base populations can be created from very few individuals, which can lead to small effective population sizes and associated reductions in genetic variability. In this study, we used genomic information that was recently made available for turbot (Scophthalmus maximus), gilthead seabream (Sparus aurata), European seabass (Dicentrarchus labrax) and common carp (Cyprinus carpio) to obtain accurate estimates of the effective size for commercial populations. METHODS: Restriction-site associated DNA sequencing data were used to estimate current and historical effective population sizes. We used a novel method that considers the linkage disequilibrium spectrum for the whole range of genetic distances between all pairs of single nucleotide polymorphisms (SNPs), and thus accounts for potential fluctuations in population size over time. RESULTS: Our results show that the current effective population size for these populations is small (equal to or less than 50 fish), potentially putting the sustainability of the breeding programmes at risk. We have also detected important drops in effective population size about five to nine generations ago, most likely as a result of domestication and the start of selective breeding programmes for these species in Europe. CONCLUSIONS: Our findings highlight the need to broaden the genetic composition of the base populations from which selection programmes start, and suggest that measures designed to increase effective population size within all farmed populations analysed here should be implemented in order to manage genetic variability and ensure the sustainability of the breeding programmes.


Asunto(s)
Lubina , Carpas , Peces Planos , Dorada , Animales , Humanos , Densidad de Población , Selección Artificial
8.
J Invertebr Pathol ; 180: 107542, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33545132

RESUMEN

Vibrio europaeus is an emergent pathogen affecting the most important bivalve species reared in Spanish and French hatcheries. Using a genomic approach, we identified V. europaeus outside Europe for the first time from massive larval mortalities of scallop (Argopecten purpuratus) in Chile and from seawater near a shellfish hatchery in the US West Coast. Results show the worldwide spreading and potential impact of V. europaeus for aquaculture; these four countries are among the 10 major producers of mollusks. Pathogenicity of V. europaeus was demonstrated for the first time towards scallop, the second most important species for Chilean mariculture.


Asunto(s)
Pectinidae/microbiología , Vibrio/aislamiento & purificación , Animales , Acuicultura , Chile , Filogenia , Estados Unidos , Vibrio/clasificación
9.
Fish Physiol Biochem ; 46(6): 2367-2376, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33011865

RESUMEN

Turbot is an important flatfish widely distributed along the European coasts, whose fishery is centered in the North Sea. The commercial value of the species has boosted a successful aquaculture sector in Europe and China. Body growth is the main target of turbot breeding programs and is also a key trait related to local adaptation to temperature and salinity. Differences in growth rate and optimal growth temperature in turbot have been shown to be associated with a hemoglobin polymorphism reported more than 50 years ago. Here, we identified a Gly16Asp amino acid substitution in the ß1 globin subunit by searching for genetic variation in the five functional globin genes within the whole annotated turbot genome. We predicted increased stability of the turbot hemoglobin by the replacement of the conserved Gly with the negative charged Asp residue that is consistent with the higher rate of αß dimer assembly in the human J-Baltimore Gly16ß->Asp mutant than in normal HbA. The turbot Hbß1-Gly16 variant dominated in the northern populations examined, particularly in the Baltic Sea, while the Asp allele showed elevated frequencies in southern populations and was the prevalent variant in the Adriatic Sea. Body weight did not associate with the Hbß1 genotypes at farming conditions (i.e., high oxygen levels, feeding ad libitum) after analyzing 90 fish with high growth dispersal from nine turbot families. Nevertheless, all data at hand suggest that the turbot hemoglobin polymorphism has an adaptive significance in the variable wild conditions regarding temperature and oxygen availability.


Asunto(s)
Proteínas de Peces/genética , Peces Planos/genética , Hemoglobinas/genética , Animales , Europa (Continente) , Femenino , Genoma , Masculino , Modelos Moleculares , Polimorfismo de Nucleótido Simple
10.
Fish Shellfish Immunol ; 72: 611-621, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29162545

RESUMEN

The production of Manila clam (Ruditapes philippinarum) is seriously threatened by the protistan parasite Perkinsus olseni. We characterized and compared gene expression of Manila clam haemocytes in response to P. olseni in a time-course (10 h, 24 h, 8 d) controlled laboratory challenge (LC), representing the first step of infection, and in a more complex infection in the wild (WI), using a validated oligo-microarray containing 11,232 transcripts, mostly annotated. Several immune-genes involved in NIK/NF-kappaB signalling, Toll-like receptor signalling and apoptosis were activated at LC-10 h. However, down-regulation of genes encoding lysozyme, histones, cathepsins and heat shock proteins indicated signals of immunodepression, which persisted at LC-24 h, when only down-regulated genes were detected. A rebound of haemocyte activity occurred at LC-8 d as shown by up-regulation of genes involved in cytoskeleton organization and cell survival. The WI study showed a more complex picture, and several immune-relevant processes including cytoskeleton organization, cell survival, apoptosis, encapsulation, cell redox- and lipid-homeostasis were activated, illustrating the main mechanism of host response. Our results provide useful information, including potential biomarkers, to develop strategies for controlling Manila clam perkinsosis.


Asunto(s)
Alveolados/fisiología , Bivalvos/genética , Bivalvos/inmunología , Hemocitos/inmunología , Inmunidad Innata/genética , Transcriptoma/inmunología , Animales , Apoptosis/genética , Hemocitos/parasitología , Interacciones Huésped-Parásitos/inmunología , Análisis de Secuencia por Matrices de Oligonucleótidos , Transducción de Señal/genética
11.
Fish Shellfish Immunol ; 59: 331-344, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27815201

RESUMEN

The flat oyster, Ostrea edulis, is one of the main farmed oysters, not only in Europe but also in the United States and Canada. Bonamiosis due to the parasite Bonamia ostreae has been associated with high mortality episodes in this species. This parasite is an intracellular protozoan that infects haemocytes, the main cells involved in oyster defence. Due to the economical and ecological importance of flat oyster, genomic data are badly needed for genetic improvement of the species, but they are still very scarce. The objective of this study is to develop a sequence database, OedulisDB, with new genomic and transcriptomic resources, providing new data and convenient tools to improve our knowledge of the oyster's immune mechanisms. Transcriptomic and genomic sequences were obtained using 454 pyrosequencing and compiled into an O. edulis database, OedulisDB, consisting of two sets of 10,318 and 7159 unique sequences that represent the oyster's genome (WG) and de novo haemocyte transcriptome (HT), respectively. The flat oyster transcriptome was obtained from two strains (naïve and tolerant) challenged with B. ostreae, and from their corresponding non-challenged controls. Approximately 78.5% of 5619 HT unique sequences were successfully annotated by Blast search using public databases. A total of 984 sequences were identified as being related to immune response and several key immune genes were identified for the first time in flat oyster. Additionally, transcriptome information was used to design and validate the first oligo-microarray in flat oyster enriched with immune sequences from haemocytes. Our transcriptomic and genomic sequencing and subsequent annotation have largely increased the scarce resources available for this economically important species and have enabled us to develop an OedulisDB database and accompanying tools for gene expression analysis. This study represents the first attempt to characterize in depth the O. edulis haemocyte transcriptome in response to B. ostreae through massively sequencing and has aided to improve our knowledge of the immune mechanisms of flat oyster. The validated oligo-microarray and the establishment of a reference transcriptome will be useful for large-scale gene expression studies in this species.


Asunto(s)
Bases de Datos Genéticas , Genoma , Haplosporidios/inmunología , Inmunidad Innata , Análisis de Secuencia por Matrices de Oligonucleótidos , Ostrea/genética , Ostrea/parasitología , Animales , Etiquetas de Secuencia Expresada , Hemocitos/inmunología , Hemocitos/metabolismo , Hemocitos/parasitología , Ostrea/inmunología , Análisis de Secuencia de ADN , Análisis de Secuencia de ARN , Transcriptoma
12.
J Invertebr Pathol ; 135: 22-33, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26820448

RESUMEN

The protistan parasite Perkinsus olseni is a deadly causative agent of perkinsosis, a molluscan disease affecting Manila clam (Ruditapes philippinarum), having a significant impact on world mollusc production. Deciphering the underlying molecular mechanisms in R. philippinarum-P. olseni interaction is crucial for controlling this parasitosis. The present study investigated the transcriptional expression in the parasite trophozoite using RNA-seq. Control and treatment (in vitro challenged with Manila clam-plasma) P. olseni trophozoite RNA were extracted and sequenced on the Illumina HiSeq 2000 instrument using a 100-bp paired-end sequencing strategy. Paired reads (64.7 million) were de novo assembled using Trinity, and the resultant transcripts were further clustered using CAP3. The re-constructed P. olseni transcriptome contains 47,590 unique transcripts of which 23,505 were annotated to 9764 unique proteins. A large number of genes were associated with Gene Ontology terms such as stress and immune-response, cell homeostasis, antioxidation, cell communication, signal transduction, signalling and proteolysis. Among annotated transcripts, a preliminary gene expression analysis detected 679 up-regulated and 478 down-regulated genes, linked to virulence factors, anti-oxidants, adhesion and immune-response molecules. Genes of several metabolic pathways such as DOXP/MEP, FAS II or folate biosynthesis, which are potential therapeutic targets, were identified. This study is the first description of the P. olseni transcriptome, and provides a substantial genomic resource for studying the molecular mechanisms of the host-parasite interaction in perkinsosis. In this sense, it is also the first evaluation of the parasite gene expression after challenge with clam extracellular products.


Asunto(s)
Alveolados/genética , Bivalvos/parasitología , Interacciones Huésped-Parásitos/genética , Transcriptoma/genética , Trofozoítos/fisiología , Alveolados/patogenicidad , Aminoacil-ARNt Sintetasas/metabolismo , Animales , Ácido Fólico/biosíntesis , Regulación de la Expresión Génica , Hemolinfa/química , Lípidos/biosíntesis , Lípidos/genética , Péptido Hidrolasas/metabolismo , Inhibidores de Proteasas/metabolismo , Pirimidinas/biosíntesis , ARN/química , ARN/aislamiento & purificación , Transducción de Señal/genética , Factores de Virulencia/fisiología
13.
Int J Mol Sci ; 17(2): 243, 2016 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-26901189

RESUMEN

Growth traits represent a main goal in aquaculture breeding programs and may be related to adaptive variation in wild fisheries. Integrating quantitative trait loci (QTL) mapping and next generation sequencing can greatly help to identify variation in candidate genes, which can result in marker-assisted selection and better genetic structure information. Turbot is a commercially important flatfish in Europe and China, with available genomic information on QTLs and genome mapping. Muscle and liver RNA-seq from 18 individuals was carried out to obtain gene sequences and markers functionally related to growth, resulting in a total of 20,447 genes and 85,344 single nucleotide polymorphisms (SNPs). Many growth-related genes and SNPs were identified and placed in the turbot genome and genetic map to explore their co-localization with growth-QTL markers. Forty-five SNPs on growth-related genes were selected based on QTL co-localization and relevant function for growth traits. Forty-three SNPs were technically feasible and validated in a wild Atlantic population, where 91% were polymorphic. The integration of functional and structural genomic resources in turbot provides a practical approach for QTL mining in this species. Validated SNPs represent a useful set of growth-related gene markers for future association, functional and population studies in this flatfish species.


Asunto(s)
Peces Planos/crecimiento & desarrollo , Genómica/métodos , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Transcriptoma , Animales , Acuicultura , Mapeo Cromosómico , Peces Planos/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Hígado/metabolismo , Músculos/metabolismo , Selección Artificial
14.
BMC Genomics ; 16: 973, 2015 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-26581195

RESUMEN

BACKGROUND: Controlling sex ratios is essential for the aquaculture industry, especially in those species with sex dimorphism for relevant productive traits, hence the importance of knowing how the sexual phenotype is established in fish. Turbot, a very important fish for the aquaculture industry in Europe, shows one of the largest sexual growth dimorphisms amongst marine cultured species, being all-female stocks a desirable goal for the industry. Although important knowledge has been achieved on the genetic basis of sex determination (SD) in this species, the master SD gene remains unknown and precise information on gene expression at the critical stage of sex differentiation is lacking. In the present work, we examined the expression profiles of 29 relevant genes related to sex differentiation, from 60 up to 135 days post fertilization (dpf), when gonads are differentiating. We also considered the influence of three temperature regimes on sex differentiation. RESULTS: The first sex-related differences in molecular markers could be observed at 90 days post fertilization (dpf) and so we have called that time the onset of sex differentiation. Three genes were the first to show differential expression between males and females and also allowed us to sex turbot accurately at the onset of sex differentiation (90 dpf): cyp19a1a, amh and vasa. The expression of genes related to primordial germ cells (vasa, gsdf, tdrd1) started to increase between 75-90 dpf and vasa and tdrd1 later presented higher expression in females (90-105 dpf). Two genes placed on the SD region of turbot (sox2, fxr1) did not show any expression pattern suggestive of a sex determining function. We also detected changes in the expression levels of several genes (ctnnb1, cyp11a, dmrt2 or sox6) depending on culture temperature. CONCLUSION: Our results enabled us to identify the first sex-associated genetic cues (cyp19a1a, vasa and amh) at the initial stages of gonad development in turbot (90 dpf) and to accurately sex turbot at this age, establishing the correspondence between gene expression profiles and histological sex. Furthermore, we profiled several genes involved in sex differentiation and found specific temperature effects on their expression.


Asunto(s)
Peces Planos/crecimiento & desarrollo , Peces Planos/genética , Perfilación de la Expresión Génica , Diferenciación Sexual/genética , Animales , Femenino , Fertilización , Peces Planos/fisiología , Redes Reguladoras de Genes , Masculino , Sitios de Carácter Cuantitativo/genética , Temperatura
15.
Chromosoma ; 123(3): 281-91, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24473579

RESUMEN

Bacterial artificial chromosomes (BAC) have been widely used for fluorescence in situ hybridization (FISH) mapping of chromosome landmarks in different organisms, including a few in teleosts. In this study, we used BAC-FISH to consolidate the previous genetic and cytogenetic maps of the turbot (Scophthalmus maximus), a commercially important pleuronectiform. The maps consisted of 24 linkage groups (LGs) but only 22 chromosomes. All turbot LGs were assigned to specific chromosomes using BAC probes obtained from a turbot 5× genomic BAC library. It consisted of 46,080 clones with inserts of at least 100 kb and <5 % empty vectors. These BAC probes contained gene-derived or anonymous markers, most of them linked to quantitative trait loci (QTL) related to productive traits. BAC clones were mapped by FISH to unique marker-specific chromosomal positions, which showed a notable concordance with previous genetic mapping data. The two metacentric pairs were cytogenetically assigned to LG2 and LG16, and the nucleolar organizer region (NOR)-bearing pair was assigned to LG15. Double-color FISH assays enabled the consolidation of the turbot genetic map into 22 linkage groups by merging LG8 with LG18 and LG21 with LG24. In this work, a first-generation probe panel of BAC clones anchored to the turbot linkage and cytogenetical map was developed. It is a useful tool for chromosome traceability in turbot, but also relevant in the context of pleuronectiform karyotypes, which often show small hardly identifiable chromosomes. This panel will also be valuable for further integrative genomics of turbot within Pleuronectiformes and teleosts, especially for fine QTL mapping for aquaculture traits, comparative genomics, and whole-genome assembly.


Asunto(s)
Cromosomas Artificiales Bacterianos/genética , Peces Planos/genética , Animales , Análisis Citogenético , Ligamiento Genético , Marcadores Genéticos , Hibridación Fluorescente in Situ , Mapeo Físico de Cromosoma , Sitios de Carácter Cuantitativo
16.
BMC Genomics ; 15: 648, 2014 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-25091330

RESUMEN

BACKGROUND: Gene expression analysis by reverse transcription quantitative PCR (qPCR) is the most widely used method for analyzing the expression of a moderate number of genes and also for the validation of microarray results. Several issues are crucial for a successful qPCR study, particularly the selection of internal reference genes for normalization and efficiency determination. There is no agreement on which method is the best to detect the most stable genes neither on how to perform efficiency determination. In this study we offer a comprehensive evaluation of the characteristics of reference gene selection methods and how to decide which one is more reliable when they show discordant outcomes. Also, we analyze the current efficiency calculation controversy. Our dataset is composed by gonad samples of turbot at different development times reared at different temperatures. Turbot (Scophthalmus maximus) is a relevant marine aquaculture European species with increasing production in the incoming years. Since females largely outgrow males, identification of genes related to sex determination, gonad development and reproductive behavior, and analysis of their expression profiles are of primary importance for turbot industry. RESULTS: We analyzed gene stability of six reference genes: RPS4, RPL17, GAPDH, ACTB, UBQ and B2M using the comparative delta-CT method, Bestkeeper, NormFinder and GeNorm approaches in gonad samples of turbot. Supported by descriptive statistics, we found NormFinder to be the best method, while on the other side, GeNorm results proved to be unreliable. According to our analysis, UBQ and RPS4 were the most stable genes, while B2M was the least stable gene. We also analyzed the efficiency calculation softwares LinRegPCR, LREanalyzer, DART and PCR-Miner and we recommend LinRegPCR for research purposes since it does not systematically overestimate efficiency. CONCLUSION: Our results indicate that NormFinder and LinRegPCR are the best approaches for reference gene selection and efficiency determination, respectively. We also recommend the use of UBQ and RPS4 for normalization of gonad development samples in turbot.


Asunto(s)
Peces Planos/genética , Ovario/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/normas , Testículo/metabolismo , Animales , Femenino , Masculino , Estándares de Referencia , Temperatura
17.
BMC Genomics ; 15: 1149, 2014 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-25526753

RESUMEN

BACKGROUND: Enteromyxosis caused by the intestinal myxozoan parasite Enteromyxum scophthalmi is a serious threat for turbot (Scophthalmus maximus, L.) aquaculture, causing severe catarrhal enteritis leading to a cachectic syndrome, with no therapeutic options available. There are still many aspects of host-parasite interaction and disease pathogenesis that are yet to be elucidated, and to date, no analysis of the transcriptomic changes induced by E. scophthalmi in turbot organs has been conducted. In this study, RNA-seq technology was applied to head kidney, spleen and pyloric caeca of severely infected turbot with the aim of furthering our understanding of the pathogenetic mechanisms and turbot immune response against enteromyxosis. RESULTS: A huge amount of information was generated with more than 23,000 identified genes in the three organs, amongst which 4,762 were differently expressed (DE) between infected and control fish. Associate gene functions were studied based on gene ontology terms and available literature, and the most interesting DE genes were classified into five categories: 1) immune and defence response; 2) apoptosis and cell proliferation; 3) iron metabolism and erythropoiesis; 4) cytoskeleton and extracellular matrix and 5) metabolism and digestive function. The analysis of down-regulated genes of the first category revealed evidences of a connexion failure between innate and adaptive immune response, especially represented by a high number of DE interferon-related genes in the three organs. Furthermore, we found an intense activation of local immune response at intestinal level that appeared exacerbated, whereas in kidney and spleen genes involved in adaptive immune response were mainly down-regulated. The apoptotic machinery was only clearly activated in pyloric caeca, while kidney and spleen showed a marked depression of genes related to erythropoiesis, probably related to disorders in iron homeostasis. The genetic signature of the causes and consequences of cachexia was also demonstrated by the down-regulation of the genes encoding structural proteins and those involved in the digestive metabolism. CONCLUSIONS: This transcriptomic study has enabled us to gain a better understanding of the pathogenesis of enteromyxosis and identify a large number of DE target genes that bring us closer to the development of strategies designed to effectively combat this pathogen.


Asunto(s)
Enfermedades de los Peces/parasitología , Peces Planos/genética , Peces Planos/parasitología , Perfilación de la Expresión Génica , Myxozoa/fisiología , Enfermedades Parasitarias en Animales/genética , Análisis de Secuencia de ARN , Animales , Apoptosis/genética , Proliferación Celular , Citoesqueleto/metabolismo , Digestión/genética , Eritropoyesis/genética , Matriz Extracelular/metabolismo , Enfermedades de los Peces/genética , Enfermedades de los Peces/inmunología , Peces Planos/inmunología , Peces Planos/fisiología , Ontología de Genes , Hierro/metabolismo , Enfermedades Parasitarias en Animales/inmunología
18.
Mol Biol Rep ; 41(3): 1501-9, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24415295

RESUMEN

Understanding the genetic basis of sex determination mechanisms is essential for improving the productivity of farmed aquaculture fish species like turbot (Scophthalmus maximus). In culture conditions turbot males grow slower than females starting from eight months post-hatch, and this differential growth rate is maintained until sexual maturation is reached, being mature females almost twice as big as males of the same age. The goal of this study was to identify sex-specific DNA markers in turbot using comparative random amplified polymorphism DNA (RAPD) profiles in males and females to get new insights of the genetic architecture related to sex determination. In order to do this, we analyzed 540 commercial 10-mer RAPD primers in male and female pools of a gynogenetic family because of its higher inbreeding, which facilitates the detection of associations across the genome. Two sex-linked RAPD markers were identified in the female pool and one in the male pool. After the analysis of the three markers on individual samples of each pool and also in unrelated individuals, only one RAPD showed significant association with females. This marker was isolated, cloned and sequenced, containing two sequences, a microsatellite (SEX01) and a minisatellite (SEX02), which were mapped in the turbot reference map. From this map position, through a comparative mapping approach, we identified Foxl2, a relevant gene related to initial steps of sex differentiation, and Wnt4, a gene related with ovarian development, close to the microsatellite and minisatellite markers, respectively. The position of Foxl2 and Wnt4 was confirmed by linkage mapping in the reference turbot map.


Asunto(s)
Peces Planos/genética , Repeticiones de Microsatélite/genética , Técnica del ADN Polimorfo Amplificado Aleatorio/métodos , Procesos de Determinación del Sexo , Animales , Mapeo Cromosómico , Etiquetas de Secuencia Expresada , Femenino , Peces Planos/fisiología , Humanos , Masculino , Sitios de Carácter Cuantitativo/genética , Diferenciación Sexual
19.
Theriogenology ; 230: 165-173, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39305853

RESUMEN

Biostimulation aims to optimize reproductive parameters as part of animal management practices by modulating animal sensory systems. Chemical signals, mostly known as pheromones, have a great potential in this regard. This study was conducted to determine the influence of short-term male rabbit exposure to different biological secretions, potentially pheromone-mediated, on reproductive parameters of males. Four groups of 18 males each were exposed to A) doe urine, B) 2-phenoxyethanol, C) doe vaginal swab, and D) distilled water (control), three times over a 2.5h exposure window, just before semen collection. Semen volume, sperm concentration and motility, as well as subpopulation analysis of the spermatozoa were assessed for each condition. Additionally, testosterone levels in blood samples were monitored at five time points over the 2.5 h exposure window. We found a higher percentage of motile, progressive, fast progressive and mid-progressive spermatozoa in any of the three experimental groups compared to the control group. In contrast, the semen volume and the percentage of immotile and non-progressive spermatozoa was generally higher in the control group. We then identified a higher proportion of a subpopulation of fast and progressive spermatozoa in groups A, B, and C compared to group D. Our data indicates that sperm motility increases when animals are exposed to specific biological fluids potentially containing pheromones, and that an increase in sperm volume does not correlate with an increase in spermatozoa concentration, progressiveness, and speed. Finally, no differences in testosterone levels were found among comparisons, although males of groups A and C (exposed to natural female biological fluids) showed a tendency towards higher testosterone levels. In conclusion, our results indicate that rabbit sperm quality increases upon exposure to the biological secretions proposed, thereby supporting further investigation into their molecular identity. This exploration could eventually pave the way for implementing the use of pheromones in rabbit husbandry to enhance reproductive and productive parameters in farmed rabbits.

20.
BMC Genomics ; 14: 180, 2013 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-23497389

RESUMEN

BACKGROUND: Genomic resources for plant and animal species that are under exploitation primarily for human consumption are increasingly important, among other things, for understanding physiological processes and for establishing adequate genetic selection programs. Current available techniques for high-throughput sequencing have been implemented in a number of species, including fish, to obtain a proper description of the transcriptome. The objective of this study was to generate a comprehensive transcriptomic database in turbot, a highly priced farmed fish species in Europe, with potential expansion to other areas of the world, for which there are unsolved production bottlenecks, to understand better reproductive- and immune-related functions. This information is essential to implement marker assisted selection programs useful for the turbot industry. RESULTS: Expressed sequence tags were generated by Sanger sequencing of cDNA libraries from different immune-related tissues after several parasitic challenges. The resulting database ("Turbot 2 database") was enlarged with sequences generated from a 454 sequencing run of brain-hypophysis-gonadal axis-derived RNA obtained from turbot at different development stages. The assembly of Sanger and 454 sequences generated 52,427 consensus sequences ("Turbot 3 database"), of which 23,661 were successfully annotated. A total of 1,410 sequences were confirmed to be related to reproduction and key genes involved in sex differentiation and maturation were identified for the first time in turbot (AR, AMH, SRY-related genes, CYP19A, ZPGs, STAR FSHR, etc.). Similarly, 2,241 sequences were related to the immune system and several novel key immune genes were identified (BCL, TRAF, NCK, CD28 and TOLLIP, among others). The number of genes of many relevant reproduction- and immune-related pathways present in the database was 50-90% of the total gene count of each pathway. In addition, 1,237 microsatellites and 7,362 single nucleotide polymorphisms (SNPs) were also compiled. Further, 2,976 putative natural antisense transcripts (NATs) including microRNAs were also identified. CONCLUSIONS: The combined sequencing strategies employed here significantly increased the turbot genomic resources available, including 34,400 novel sequences. The generated database contains a larger number of genes relevant for reproduction- and immune-associated studies, with an excellent coverage of most genes present in many relevant physiological pathways. This database also allowed the identification of many microsatellites and SNP markers that will be very useful for population and genome screening and a valuable aid in marker assisted selection programs.


Asunto(s)
Cruzamiento/métodos , Enfermedades de los Peces/prevención & control , Peces Planos/genética , Peces Planos/fisiología , Genómica , Reproducción/genética , Análisis de Secuencia de ARN , Animales , Bases de Datos Genéticas , Peces Planos/inmunología , Marcadores Genéticos/genética , Humanos , Anotación de Secuencia Molecular , Análisis de Secuencia por Matrices de Oligonucleótidos , Polimorfismo de Nucleótido Simple , ARN sin Sentido/genética , ARN Mensajero/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA