Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Emerg Infect Dis ; 30(6): 1182-1192, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38781929

RESUMEN

In adults, viral load and disease severity can differ by SARS-CoV-2 variant, patterns less understood in children. We evaluated symptomatology, cycle threshold (Ct) values, and SARS-CoV-2 variants among 2,299 pediatric SARS-CoV-2 patients (0-21 years of age) in Colorado, USA, to determine whether children infected with Delta or Omicron had different symptom severity or Ct values than during earlier variants. Children infected during the Delta and Omicron periods had lower Ct values than those infected during pre-Delta, and children <1 year of age had lower Ct values than older children. Hospitalized symptomatic children had lower Ct values than asymptomatic patients. Compared with pre-Delta, more children infected during Delta and Omicron were symptomatic (75.4% pre-Delta, 95.3% Delta, 99.5% Omicron), admitted to intensive care (18.8% pre-Delta, 39.5% Delta, 22.9% Omicron), or received oxygen support (42.0% pre-Delta, 66.3% Delta, 62.3% Omicron). Our data reinforce the need to include children, especially younger children, in pathogen surveillance efforts.


Asunto(s)
COVID-19 , SARS-CoV-2 , Índice de Severidad de la Enfermedad , Carga Viral , Humanos , COVID-19/epidemiología , COVID-19/virología , Niño , Colorado/epidemiología , Preescolar , Lactante , Adolescente , Masculino , Femenino , Recién Nacido , Adulto Joven , Hospitalización
2.
Emerg Infect Dis ; 30(3): 423-431, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38407198

RESUMEN

Surveillance for emerging pathogens is critical for developing early warning systems to guide preparedness efforts for future outbreaks of associated disease. To better define the epidemiology and burden of associated respiratory disease and acute flaccid myelitis (AFM), as well as to provide actionable data for public health interventions, we developed a multimodal surveillance program in Colorado, USA, for enterovirus D68 (EV-D68). Timely local, state, and national public health outreach was possible because prospective syndromic surveillance for AFM and asthma-like respiratory illness, prospective clinical laboratory surveillance for EV-D68 among children hospitalized with respiratory illness, and retrospective wastewater surveillance led to early detection of the 2022 outbreak of EV-D68 among Colorado children. The lessons learned from developing the individual layers of this multimodal surveillance program and how they complemented and informed the other layers of surveillance for EV-D68 and AFM could be applied to other emerging pathogens and their associated diseases.


Asunto(s)
Enfermedades Virales del Sistema Nervioso Central , Enterovirus Humano D , Mielitis , Enfermedades Neuromusculares , Enfermedades Respiratorias , Niño , Humanos , Colorado/epidemiología , Estudios Prospectivos , Estudios Retrospectivos , Aguas Residuales , Monitoreo Epidemiológico Basado en Aguas Residuales
3.
MMWR Morb Mortal Wkly Rep ; 72(19): 513-516, 2023 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-37167123

RESUMEN

In July 2021, the Colorado Department of Public Health and Environment (CDPHE) laboratory identified a cluster of five Salmonella enterica serotype Thompson isolates related to one another within one allele difference, using whole genome multilocus sequence typing (wgMLST). These five isolates, submitted to the public health laboratory as is routine process for confirmatory testing of Salmonella, were highly related to those identified in a 2020 multistate investigation, during which traceback was conducted for sushi-grade tuna and salmon; a common supplier was not identified. The 2021 investigation commenced on August 5, 2021, with five patients living in Colorado, and one each in Missouri, Washington, and Wisconsin. During August-December 2021, CDC, CDPHE, public health and regulatory officials in several states, and the Food and Drug Administration (FDA) conducted epidemiologic, environmental, and laboratory investigations of this multistate outbreak of Salmonella Thompson. Isolates were genetically related to one another and to 2020 isolates within zero to one allele difference. Implicated seafood products were traced to a single seafood distributor, in which the outbreak strain was identified through environmental sampling, and in which inspection identified inadequate sanitization and opportunities for cross-contamination of raw fish. The distributor issued a voluntary recall of 16 seafood items with high potential for contamination and completed remediation actions. This outbreak illustrated the importance of effective cleaning and sanitizing procedures and implementation of controls. When multiple products are recalled during an outbreak investigation, collaboration between public health agencies and implicated facilities can help provide food safety information to restaurants, retailers, and consumers, and to ensure disposal of all recalled products.


Asunto(s)
Intoxicación Alimentaria por Salmonella , Infecciones por Salmonella , Animales , Humanos , Estados Unidos/epidemiología , Intoxicación Alimentaria por Salmonella/epidemiología , Infecciones por Salmonella/epidemiología , Salmonella/genética , Alimentos Marinos , Brotes de Enfermedades , Colorado/epidemiología
4.
Emerg Infect Dis ; 28(8): 1551-1558, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35705189

RESUMEN

A COVID-19 outbreak occurred among Cameron Peak Fire responders in Colorado, USA, during August 2020-January 2021. The Cameron Peak Fire was the largest recorded wildfire in Colorado history, lasting August-December 2020. At least 6,123 responders were involved, including 1,260 firefighters in 63 crews who mobilized to the fire camps. A total of 79 COVID-19 cases were identified among responders, and 273 close contacts were quarantined. State and local public health investigated the outbreak and coordinated with wildfire management teams to prevent disease spread. We performed whole-genome sequencing and applied social network analysis to visualize clusters and transmission dynamics. Phylogenetic analysis identified 8 lineages among sequenced specimens, implying multiple introductions. Social network analysis identified spread between and within crews. Strategies such as implementing symptom screening and testing of arriving responders, educating responders about overlapping symptoms of smoke inhalation and COVID-19, improving physical distancing of crews, and encouraging vaccinations are recommended.


Asunto(s)
COVID-19 , Bomberos , Incendios Forestales , COVID-19/epidemiología , Colorado/epidemiología , Brotes de Enfermedades , Humanos , Filogenia
5.
J Pediatr ; 247: 29-37.e7, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35447121

RESUMEN

OBJECTIVE: To assess the household secondary infection risk (SIR) of B.1.1.7 (Alpha) and non-Alpha lineages of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) among children. STUDY DESIGN: During January to April 2021, we prospectively followed households with a SARS-CoV-2 infection. We collected questionnaires, serial nasopharyngeal swabs for reverse transcription polymerase chain reaction testing and whole genome sequencing, and serial blood samples for serology testing. We calculated SIRs by primary case age (pediatric vs adult), household contact age, and viral lineage. We evaluated risk factors associated with transmission and described symptom profiles among children. RESULTS: Among 36 households with pediatric primary cases, 21 (58%) had secondary infections. Among 91 households with adult primary cases, 51 (56%) had secondary infections. SIRs among pediatric and adult primary cases were 45% and 54%, respectively (OR, 0.79; 95% CI, 0.41-1.54). SIRs among pediatric primary cases with Alpha and non-Alpha lineage were 55% and 46%, respectively (OR, 1.52; 95% CI, 0.51-4.53). SIRs among pediatric and adult household contacts were 55% and 49%, respectively (OR, 1.01; 95% CI, 0.68-1.50). Among pediatric contacts, no significant differences in the odds of acquiring infection by demographic or household characteristics were observed. CONCLUSIONS: Household transmission of SARS-CoV-2 from children and adult primary cases to household members was frequent. The risk of secondary infection was similar among child and adult household contacts. Among children, household transmission of SARS-CoV-2 and the risk of secondary infection was not influenced by lineage. Continued mitigation strategies (eg, masking, physical distancing, vaccination) are needed to protect at-risk groups regardless of virus lineage circulating in communities.


Asunto(s)
COVID-19 , SARS-CoV-2 , Adulto , COVID-19/epidemiología , California , Niño , Colorado/epidemiología , Humanos
6.
MMWR Morb Mortal Wkly Rep ; 70(19): 717-718, 2021 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-33988184

RESUMEN

The B.1.427 and B.1.429 variants of SARS-CoV-2, the virus that causes COVID-19, were first described in Southern California on January 20, 2021 (1); on March 16 they were designated variants of concern* (2). Data on these variants are limited, but initial reports suggest that, compared with other lineages, they might be more infectious (1,2), cause more severe illness (2), and be less susceptible to neutralizing monoclonal antibody products such as bamlanivimab, an investigational treatment for mild-to-moderate COVID-19 (1-3). On January 24, the Colorado Department of Public Health and Environment (CDPHE) identified the first Colorado case of COVID-19 attributed to these variants. B.1.427 and B.1.429 were considered a single variant described as CAL.20C or B.1.427/B.1.429 in the 20C clade (1,3); in this report "B.1.427/B.1.429" refers to B.1.427 or B.1.429 lineage, including those reported as B.1.427/B.1.429 without further differentiation.


Asunto(s)
COVID-19/virología , Vigilancia en Salud Pública , SARS-CoV-2/aislamiento & purificación , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , COVID-19/epidemiología , Prueba de Ácido Nucleico para COVID-19 , Niño , Preescolar , Colorado/epidemiología , Femenino , Humanos , Lactante , Masculino , Persona de Mediana Edad , Adulto Joven
7.
MMWR Morb Mortal Wkly Rep ; 70(32): 1084-1087, 2021 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-34383734

RESUMEN

On May 5, 2021, the Colorado Department of Public Health and Environment (CDPHE) identified the first five COVID-19 cases caused by the SARS-CoV-2 B.1.617.2 (Delta) variant in Mesa County in western Colorado (population 154,933, <3% of the state population). All five initial cases were associated with school settings. Through early June, Mesa County experienced a marked increase in the proportion of Delta variant cases identified through sequencing: the 7-day proportion of sequenced specimens identified as B.1.617.2 in Mesa County more than doubled, from 43% for the week ending May 1 to 88% for the week ending June 5. As of June 6, more than one half (51%) of sequenced B.1.617.2 specimens in Colorado were from Mesa County. CDPHE assessed data from surveillance, vaccination, laboratory, and hospital sources to describe the preliminary epidemiology of the Delta variant and calculate crude vaccine effectiveness (VE). Vaccination coverage in early May in Mesa County was lower (36% of eligible residents fully vaccinated) than that in the rest of the state (44%). Compared with that in all other Colorado counties, incidence, intensive care unit (ICU) admissions, and COVID-19 case fatality ratios were significantly higher in Mesa County during the analysis period, April 27-June 6, 2021. In addition, during the same time period, the proportion of COVID-19 cases in persons who were fully vaccinated (vaccine breakthrough cases) was significantly higher in Mesa County compared with that in all other Colorado counties. Estimated crude VE against reported symptomatic infection for a 2-week period ending June 5 was 78% (95% confidence interval [CI] = 71%-84%) for Mesa County and 89% (95% CI = 88%-91%) for other Colorado counties. Vaccination is a critical strategy for preventing infection, serious illness, and death from COVID-19. Enhanced mitigation strategies, including masking in indoor settings irrespective of vaccination status, should be considered in areas with substantial or high case rates.


Asunto(s)
COVID-19/epidemiología , COVID-19/virología , SARS-CoV-2/aislamiento & purificación , Adolescente , Adulto , Anciano , COVID-19/prevención & control , Vacunas contra la COVID-19/administración & dosificación , Niño , Preescolar , Colorado/epidemiología , Humanos , Lactante , Recién Nacido , Persona de Mediana Edad , Adulto Joven
8.
Proc Natl Acad Sci U S A ; 114(27): 6914-6923, 2017 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-28630341

RESUMEN

Chronic hepatitis E virus (HEV) infection is a significant clinical problem in immunocompromised individuals such as organ transplant recipients, although the mechanism remains unknown because of the lack of an animal model. We successfully developed a pig model of chronic HEV infection and examined immune correlates leading to chronicity. The conditions of immunocompromised patients were mimicked by treating pigs with an immunosuppressive regimen including cyclosporine, azathioprine, and prednisolone. Immunocompromised pigs infected with HEV progressed to chronicity, because 8/10 drug-treated HEV-infected pigs continued fecal virus shedding beyond the acute phase of infection, whereas the majority (7/10) of mock-treated HEV-infected pigs cleared fecal viral shedding at 8 wk postinfection. During chronic infection, serum levels of the liver enzyme γ-glutamyl transferase and fecal virus shedding were significantly higher in immunocompromised HEV-infected pigs. To identify potential immune correlates of chronic infection, we determined serum levels of cytokines and cell-mediated immune responses in pigs. Results showed that HEV infection of immunocompromised pigs reduced the serum levels of Th1 cytokines IL-2 and IL-12, and Th2 cytokines IL-4 and IL-10, particularly during the acute phase of infection. Furthermore IFN-γ-specific CD4+ T-cell responses were reduced in immunocompromised pigs during the acute phase of infection, but TNF-α-specific CD8+ T-cell responses increased during the chronic phase of infection. Thus, active suppression of cell-mediated immune responses under immunocompromised conditions may facilitate the establishment of chronic HEV infection. This pig model will aid in delineating the mechanisms of chronic HEV infection and in developing effective therapeutics against chronic hepatitis E.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Virus de la Hepatitis E/inmunología , Hepatitis E/inmunología , Inmunidad Celular , Huésped Inmunocomprometido , Células TH1/inmunología , Células Th2/inmunología , Animales , Linfocitos T CD8-positivos/metabolismo , Linfocitos T CD8-positivos/patología , Enfermedad Crónica , Citocinas/sangre , Citocinas/inmunología , Modelos Animales de Enfermedad , Hepatitis E/sangre , Hepatitis E/inducido químicamente , Virus de la Hepatitis E/metabolismo , Humanos , Inmunosupresores/efectos adversos , Inmunosupresores/farmacología , Porcinos , Células TH1/metabolismo , Células TH1/patología , Células Th2/metabolismo , Células Th2/patología , gamma-Glutamiltransferasa/sangre , gamma-Glutamiltransferasa/inmunología
9.
J Virol ; 92(21)2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30111571

RESUMEN

Hepatitis E virus (HEV), the causative agent of hepatitis E, is an important but incompletely understood pathogen causing high mortality during pregnancy and leading to chronic hepatitis in immunocompromised individuals. The underlying mechanisms leading to hepatic damage remain unknown; however, the humoral immune response is implicated. In this study, immunoglobulin (Ig) heavy chain JH-/- knockout gnotobiotic pigs were generated using CRISPR/Cas9 technology to deplete the B-lymphocyte population, resulting in an inability to generate a humoral immune response to genotype 3 HEV infection. Compared to wild-type gnotobiotic piglets, the frequencies of B lymphocytes in the Ig heavy chain JH-/- knockouts were significantly lower, despite similar levels of other innate and adaptive T-lymphocyte cell populations. The dynamic of acute HEV infection was subsequently determined in heavy chain JH-/- knockout and wild-type gnotobiotic pigs. The data showed that wild-type piglets had higher viral RNA loads in feces and sera compared to the JH-/- knockout pigs, suggesting that the Ig heavy chain JH-/- knockout in pigs actually decreased the level of HEV replication. Both HEV-infected wild-type and JH-/- knockout gnotobiotic piglets developed more pronounced lymphoplasmacytic hepatitis and hepatocellular necrosis lesions than other studies with conventional pigs. The HEV-infected JH-/- knockout pigs also had significantly enlarged livers both grossly and as a ratio of liver/body weight compared to phosphate-buffered saline-inoculated groups. This novel gnotobiotic pig model will aid in future studies into HEV pathogenicity, an aspect which has thus far been difficult to reproduce in the available animal model systems.IMPORTANCE According to the World Health Organization, approximately 20 million HEV infections occur annually, resulting in 3.3 million cases of hepatitis E and >44,000 deaths. The lack of an efficient animal model that can mimic the full-spectrum of infection outcomes hinders our ability to delineate the mechanism of HEV pathogenesis. Here, we successfully generated immunoglobulin heavy chain JH-/- knockout gnotobiotic pigs using CRISPR/Cas9 technology, established a novel JH-/- knockout and wild-type gnotobiotic pig model for HEV, and systematically determined the dynamic of acute HEV infection in gnotobiotic pigs. It was demonstrated that knockout of the Ig heavy chain in pigs decreased the level of HEV replication. Infected wild-type and JH-/- knockout gnotobiotic piglets developed more pronounced HEV-specific lesions than other studies using conventional pigs, and the infected JH-/- knockout pigs had significantly enlarged livers. The availability of this novel model will facilitate future studies of HEV pathogenicity.


Asunto(s)
Virus de la Hepatitis E/patogenicidad , Hepatitis E/patología , Hepatitis/virología , Cadenas Pesadas de Inmunoglobulina/inmunología , Cadenas J de Inmunoglobulina/genética , Hígado/patología , Animales , Linfocitos B/citología , Sistemas CRISPR-Cas/genética , Modelos Animales de Enfermedad , Heces/virología , Vida Libre de Gérmenes , Hepatitis/inmunología , Inmunidad Humoral/genética , Hígado/virología , Recuento de Linfocitos , Depleción Linfocítica , ARN Viral/genética , Porcinos , Carga Viral/genética
10.
J Med Virol ; 91(11): 1960-1969, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31317546

RESUMEN

Hepatitis E is an important global disease, causing outbreaks of acute hepatitis in many developing countries and sporadic cases in industrialized countries. Hepatitis E virus (HEV) infection typically causes self-limiting acute hepatitis but can also progress to chronic disease in immunocompromised individuals. The immune response necessary for the prevention of chronic infection is T cell-dependent; however, the arm of cellular immunity responsible for this protection is not currently known. To investigate the contribution of humoral immunity in control of HEV infection and prevention of chronicity, we experimentally infected 20 wild-type (WT) and 18 immunoglobulin knockout (JH-KO) chickens with a chicken strain of HEV (avian HEV). Four weeks postinfection (wpi) with avian HEV, JH-KO chickens were unable to elicit anti-HEV antibody but had statistically significantly lower liver lesion scores than the WT chickens. At 16 wpi, viral RNA in fecal material and liver, and severe liver lesions were undetectable in both groups. To determine the role of cytotoxic lymphocytes in the prevention of chronicity, we infected 20 WT and 20 cyclosporine and CD8+ antibody-treated chickens with the same strain of avian HEV. The CD8 + lymphocyte-depleted, HEV-infected chickens had higher incidences of prolonged fecal viral shedding and statistically significantly higher liver lesion scores than the untreated, HEV-infected birds at 16 wpi. The results indicate that CD8 + lymphocytes are required for viral clearance and reduction of liver lesions in HEV infection while antibodies are not necessary for viral clearance but may contribute to the development of liver lesions in acute HEV infection.


Asunto(s)
Linfocitos B/inmunología , Linfocitos T CD8-positivos/inmunología , Anticuerpos Antihepatitis/sangre , Hepatitis Viral Animal/prevención & control , Enfermedades de las Aves de Corral/prevención & control , Infecciones por Virus ARN/veterinaria , Animales , Pollos/inmunología , Heces/virología , Técnicas de Inactivación de Genes , Hepatitis Viral Animal/inmunología , Hepevirus , Inmunidad Celular , Inmunidad Humoral , Inmunoglobulinas/genética , Hígado/patología , Hígado/virología , Depleción Linfocítica , Enfermedades de las Aves de Corral/inmunología , Enfermedades de las Aves de Corral/virología , Infecciones por Virus ARN/inmunología , Infecciones por Virus ARN/prevención & control , ARN Viral/análisis , Esparcimiento de Virus
12.
J Infect Dis ; 218(6): 856-867, 2018 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-29701840

RESUMEN

Background: Influenza A virus (IAV) vaccines offer little protection from mismatched viruses with antigenically distant hemagglutinin (HA) glycoproteins. We sought to determine if a cationic lipid/DNA complex (CLDC) adjuvant could induce heterosubtypic protection if added to a whole inactivated IAV vaccine (WIV). Methods: Adult rhesus macaques (RMs) were vaccinated and at 2 weeks boosted with either an H1N1-WIV or an H3N2-WIV, with and without CLDC adjuvant. Four weeks postboost, animals were challenged with an H1N1 IAV matched to the H1N1-WIV vaccine. Results: After challenge, viral RNA (vRNA) levels in the trachea of control RMs and RMs vaccinated with the unadjuvanted H1 or H3 WIV vaccines were similar. However, vRNA levels in the trachea of both the H1-WIV/CLDC- and the H3-WIV/CLDC-vaccinated RMs (P < 0.01 and P < 0.05, respectively) were significantly lower than in unvaccinated control RMs. Heterosubtypic protection in H3-WIV/CLDC RMs was associated with significantly higher levels of nucleoprotein (NP) and matrix-1-specific immunoglobulin G antibodies (P < 0.05) and NP-specific nonneutralizing antibody-dependent natural killer cell activation (P < 0.01) compared with unprotected H3-WIV RMs. Conclusions: Addition of the CLDC adjuvant to a simple WIV elicited immunity to conserved virus structural proteins in RMs that correlate with protection from uncontrolled virus replication after heterosubtypic influenza virus challenge.


Asunto(s)
ADN/administración & dosificación , Subtipo H1N1 del Virus de la Influenza A/fisiología , Subtipo H3N2 del Virus de la Influenza A/fisiología , Vacunas contra la Influenza/administración & dosificación , Lípidos/administración & dosificación , Infecciones por Orthomyxoviridae/prevención & control , Vacunas Atenuadas/administración & dosificación , Adyuvantes Inmunológicos/administración & dosificación , Animales , Modelos Animales de Enfermedad , Femenino , Subtipo H1N1 del Virus de la Influenza A/inmunología , Subtipo H3N2 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/farmacología , Liposomas/administración & dosificación , Macaca mulatta/inmunología , Macaca mulatta/virología , Masculino , Proteínas de la Nucleocápside , Infecciones por Orthomyxoviridae/inmunología , Plásmidos/genética , Proteínas de Unión al ARN/inmunología , Tráquea/virología , Vacunas Atenuadas/farmacología , Proteínas del Núcleo Viral/inmunología , Replicación Viral/efectos de los fármacos
14.
J Gen Virol ; 98(12): 3026-3036, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29091579

RESUMEN

Porcine reproductive and respiratory syndrome virus (PRRSV), porcine circovirus type 2 (PCV2) and swine influenza virus (SIV) are three of the most economically important swine pathogens, causing immense economic losses to the global swine industry. Monovalent commercial vaccines against each of the three viruses are routinely used in pig farms worldwide. A trivalent vaccine against all three pathogens would greatly simplify the vaccination programme and reduce the financial burden to the swine industry. In this study, by using an attenuated strain of PRRSV (strain DS722) as a live virus vector, we generated a multi-component vaccine virus, DS722-SIV-PCV2, which expresses the protective antigens from SIV and PCV2. The DS722-SIV-PCV2 trivalent vaccine virus replicates well, and expresses PCV2 capsid and SIV HA proteins in vitro. A subsequent vaccination and challenge study in 48 pigs revealed that the DS722-SIV-PCV2-vaccinated pigs had significantly reduced lung lesions and viral RNA loads when challenged with PRRSV. Upon challenge with PCV2, the vaccinated pigs had partially reduced lymphoid lesions and viral DNA loads, and when challenged with SIV the vaccinated pigs had significantly reduced acute respiratory sign scores. The results from this study demonstrate the potential of DS722-SIV-PCV2 as a candidate trivalent vaccine, and also shed light on exploring PRRSV as a potential live virus vaccine vector.


Asunto(s)
Anticuerpos Antivirales/biosíntesis , Infecciones por Circoviridae/veterinaria , Infecciones por Orthomyxoviridae/veterinaria , Síndrome Respiratorio y de la Reproducción Porcina/prevención & control , Enfermedades de los Porcinos/prevención & control , Vacunación , Vacunas Virales/biosíntesis , Animales , Antígenos Virales/química , Antígenos Virales/inmunología , Infecciones por Circoviridae/inmunología , Infecciones por Circoviridae/prevención & control , Infecciones por Circoviridae/virología , Circovirus/genética , Circovirus/inmunología , Inmunogenicidad Vacunal , Subtipo H3N2 del Virus de la Influenza A/genética , Subtipo H3N2 del Virus de la Influenza A/inmunología , Pulmón/efectos de los fármacos , Pulmón/inmunología , Pulmón/virología , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/prevención & control , Infecciones por Orthomyxoviridae/virología , Síndrome Respiratorio y de la Reproducción Porcina/inmunología , Síndrome Respiratorio y de la Reproducción Porcina/virología , Virus del Síndrome Respiratorio y Reproductivo Porcino/genética , Virus del Síndrome Respiratorio y Reproductivo Porcino/inmunología , Porcinos , Enfermedades de los Porcinos/inmunología , Enfermedades de los Porcinos/virología , Potencia de la Vacuna , Vacunas Atenuadas , Vacunas de Subunidad , Carga Viral/efectos de los fármacos , Vacunas Virales/administración & dosificación , Vacunas Virales/genética
16.
J Infect Dis ; 209(1): 24-33, 2014 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-24141979

RESUMEN

BACKGROUND: The decreased immune response among elderly individuals results in reduced influenza vaccine efficacy. Strategies to improve vaccine efficacy in elderly individuals are needed. The goal of this study was to determine whether a cationic lipid/DNA complex (CLDC) can improve the efficacy of the trivalent inactivated influenza vaccine Fluzone in elderly nonhuman primates. METHODS: Elderly (age, >18 years) rhesus macaques were vaccinated with Fluzone, with or without CLDC, and challenged with a human seasonal influenza virus isolate, A/Memphis/7/2001(H1N1). RESULTS: We found that elderly macaques have significantly lower levels of circulating naive CD4(+) T cells, naive CD8(+) T cells, and B cells as compared to juvenile monkeys. Furthermore, on the day of challenge, recipients of Fluzone/CLDC had significantly higher plasma anti-influenza virus immunoglobulin G (P < .001) and immunoglobulin A (P < .001) titers than recipients of Fluzone alone. After virus challenge, only the Fluzone/CLDC-vaccinated animals had a significantly lower level of virus replication (P < .01) relative to the unvaccinated control animals. CONCLUSIONS: These results demonstrate that CLDC can enhance the immunogenicity and efficacy of a licensed TIV in immunosenescent elderly monkeys.


Asunto(s)
Vacunas contra la Influenza/administración & dosificación , Vacunas contra la Influenza/inmunología , Infecciones por Orthomyxoviridae/prevención & control , Envejecimiento/inmunología , Animales , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Femenino , Integrina alfa4/sangre , Cadenas beta de Integrinas/sangre , Interferón gamma/sangre , Macaca mulatta , Masculino , Líquido del Lavado Nasal/virología , Infecciones por Orthomyxoviridae/inmunología , Vacunas de Productos Inactivados/administración & dosificación , Vacunas de Productos Inactivados/inmunología
17.
J Gen Virol ; 95(Pt 11): 2495-2503, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25053562

RESUMEN

In 2012, a mutant porcine circovirus type 2 (mPCV2) strain was identified in cases of PCV-associated disease (PCVAD) in the USA. The mPCV2 had an additional amino acid, lysine (K), in the capsid at position 234. The objectives of this study were to compare the pathogenicity of mPCV2, PCV2a and PCV2b in pigs using biologically pure infectious virus stocks derived from respective infectious DNA clones, and to investigate the importance of genotype-specific ORF2 and the presence of lysine at position 234 of the capsid. A total of 47, 2-week-old, caesarean-derived, colostrum-deprived (CDCD) pigs were assigned to one of seven groups. At 3 weeks of age, the pigs were experimentally inoculated with saline, PCV2a, PCV2b, mPCV2, PCV2b-234-K (lysine addition in ORF2), chimeric PCV2b-ORF1/mPCV2-ORF2 or reciprocal chimeric mPCV2-ORF1/PCV2b-ORF2. All pigs were necropsied 21 days post-infection (p.i.). Gross lesions were limited to visible icterus and loss of body condition in a portion of the mPCV2 pigs. The amount of PCV2 DNA was significantly higher in pigs inoculated with mPCV2 compared with PCV2b in sera at 7 days p.i. and faecal swabs at 14 days p.i. Based on lymphoid lesions, a higher prevalence of PCVAD was seen in pigs infected with PCV2s containing the additional 234-K (64.3 %) compared with those infected with a PCV2 with the regular 233 bp ORF2 (40 %). Results indicated that all PCV2 isolates were capable of inducing severe lesions and disease in the CDCD pig model, and there was no significant difference in virulence.


Asunto(s)
Infecciones por Circoviridae/veterinaria , Circovirus/genética , Circovirus/patogenicidad , Mutación , Enfermedades de los Porcinos/virología , Animales , Cesárea , Infecciones por Circoviridae/inmunología , Infecciones por Circoviridae/virología , Circovirus/clasificación , Calostro , ADN Viral/genética , ADN Viral/aislamiento & purificación , Femenino , Pulmón/patología , Pulmón/virología , Tejido Linfoide/patología , Tejido Linfoide/virología , Embarazo , Sus scrofa , Porcinos , Enfermedades de los Porcinos/inmunología , Enfermedades de los Porcinos/patología , Estados Unidos , Virulencia/genética
18.
J Gen Virol ; 2014 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-25381057

RESUMEN

Hepatitis E virus (HEV), the causative agent of hepatitis E, is a single-stranded positive-sense RNA virus belonging to the family Hepeviridae. At least four genotypes of the family infect humans: genotypes 1 and 2 are transmitted to humans through contaminated water, while genotypes 3 and 4 are zoonotic and have animal reservoirs. A novel strain of HEV recently identified in rabbits is a distant member of genotype 3, and thus poses a potential risk of zoonotic transmission to humans. The objective of this study was to construct and characterize an infectious cDNA clone of the rabbit HEV. Two full-length cDNA clones of rabbit HEV, pT7g-rabHEV and pT7-rabHEV, were constructed and their infectivity was tested by in vitro transfection of Huh7 human liver cells and by direct intrahepatic inoculation of rabbits with capped RNA transcripts. Results showed that positive signal for rabbit HEV protein was detected by an immunofluorescence assay with a HEV-specific antibody in Huh7 human liver cells transfected with capped RNA transcripts from the two full-length cDNA clones. Rabbits intrahepatically inoculated with capped RNA transcripts from each of the two clones developed active HEV infection as evidenced by seroconversion to anti-HEV antibodies, and detection of rabbit HEV RNA in sera and feces of inoculated animals. The availability of a rabbit HEV infectious cDNA clone now affords us the ability to delineate the mechanism of HEV replication and cross-species infection in a small animal model.

19.
J Virol ; 87(2): 1150-8, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23152507

RESUMEN

Alpha interferon (IFN-α) production is triggered when influenza virus RNA is detected by appropriate pattern recognition receptors in the host cell. IFN-α induces the expression of more than 300 interferon-stimulated genes (ISGs), and this blunts influenza virus replication. The human ISG MxA can inhibit influenza A virus replication in mouse cells by interfering with a step in the virus replication cycle after primary transcription of the negative-strand RNA genome to mRNA (J. Pavlovic, O. Haller, and P. Staeheli, J. Virol. 66:2564-2569, 1992). To determine the role of MxA in blocking human influenza A virus replication in primate cells, we manipulated MxA expression in rhesus kidney epithelial cells (LLC-MK(2)) and human lung carcinoma cells (A549). We found that IFN-α treatment prior to influenza virus infection suppressed virus replication and induced the expression of many ISGs, including MxA. However, IFN-α-mediated suppression of virus replication was abolished by small interfering RNA (siRNA) knockdown of MxA expression in IFN-treated cells. In addition, influenza virus replication was suppressed in Vero cells stably transfected with MxA. A strand-specific reverse transcription-PCR (RT-PCR) assay showed that positive-strand influenza virus mRNA and negative-strand genomic RNA (gRNA) accumulated to high levels at 8 h after infection in control Vero cells containing the empty vector. However, in Vero cells stably transfected with MxA positive-strand influenza virus mRNA, complementary positive-strand influenza virus genome RNA (cRNA) and influenza virus gRNA were drastically suppressed. Thus, in primate cells, MxA inhibits human seasonal influenza virus replication at a step prior to primary transcription of gRNA into mRNA. Taken together, these results demonstrate that MxA mediates control of influenza virus replication in primate cells treated with IFN-α.


Asunto(s)
Proteínas de Unión al GTP/biosíntesis , Proteínas de Unión al GTP/inmunología , Virus de la Influenza A/inmunología , Virus de la Influenza A/fisiología , Interferón-alfa/inmunología , Replicación Viral , Animales , Línea Celular , Chlorocebus aethiops , Humanos , Macaca mulatta , Proteínas de Resistencia a Mixovirus , ARN Viral/metabolismo , Transcripción Genética
20.
J Correct Health Care ; 29(3): 198-205, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36989514

RESUMEN

In 2020-2021, a Colorado corrections facility experienced four COVID-19 outbreaks. Case counts, attack rates (ARs) in people who are detained or incarcerated (PDI), and mitigation measures used in each outbreak were compared to evaluate effects of combined strategies. Serial PCR testing, isolation/quarantine, and masking were implemented in outbreak 1. Daily staff antigen testing began in outbreak 2. Facility-wide COVID-19 vaccination started in outbreak 3 and coverage increased by the end of outbreak 4 (PDI: <1% to 59%, staff: 27% to 40%). Despite detection of variants of concern, outbreaks 3 and 4 had 97% lower PDI ARs (both 1%) than outbreak 2 (29%). Daily staff testing and increasing vaccination coverage, with other outbreak mitigation strategies, are important to reduce COVID-19 transmission in congregate settings.


Asunto(s)
COVID-19 , Humanos , COVID-19/epidemiología , COVID-19/prevención & control , Colorado/epidemiología , Vacunas contra la COVID-19 , Brotes de Enfermedades/prevención & control , Instalaciones Correccionales , Vacunación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA