Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(15): e2321759121, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38579009

RESUMEN

Adjacent plant cells are connected by specialized cell wall regions, called middle lamellae, which influence critical agricultural characteristics, including fruit ripening and organ abscission. Middle lamellae are enriched in pectin polysaccharides, specifically homogalacturonan (HG). Here, we identify a plant-specific Arabidopsis DUF1068 protein, called NKS1/ELMO4, that is required for middle lamellae integrity and cell adhesion. NKS1 localizes to the Golgi apparatus and loss of NKS1 results in changes to Golgi structure and function. The nks1 mutants also display HG deficient phenotypes, including reduced seedling growth, changes to cell wall composition, and tissue integrity defects. These phenotypes are comparable to qua1 and qua2 mutants, which are defective in HG biosynthesis. Notably, genetic interactions indicate that NKS1 and the QUAs work in a common pathway. Protein interaction analyses and modeling corroborate that they work together in a stable protein complex with other pectin-related proteins. We propose that NKS1 is an integral part of a large pectin synthesis protein complex and that proper function of this complex is important to support Golgi structure and function.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Adhesión Celular/genética , Pectinas/metabolismo , Aparato de Golgi/genética , Aparato de Golgi/metabolismo , Pared Celular/metabolismo
2.
Proc Natl Acad Sci U S A ; 119(38): e2122969119, 2022 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-36095209

RESUMEN

Energy is essential for all cellular functions in a living organism. How cells coordinate their physiological processes with energy status and availability is thus an important question. The turnover of actin cytoskeleton between its monomeric and filamentous forms is a major energy drain in eukaryotic cells. However, how actin dynamics are regulated by ATP levels remain largely unknown in plant cells. Here, we observed that seedlings with impaired functions of target of rapamycin complex 1 (TORC1), either by mutation of the key component, RAPTOR1B, or inhibition of TOR activity by specific inhibitors, displayed reduced sensitivity to actin cytoskeleton disruptors compared to their controls. Consistently, actin filament dynamics, but not organization, were suppressed in TORC1-impaired cells. Subcellular localization analysis and quantification of ATP concentration demonstrated that RAPTOR1B localized at cytoplasm and mitochondria and that ATP levels were significantly reduced in TORC1-impaired plants. Further pharmacologic experiments showed that the inhibition of mitochondrial functions led to phenotypes mimicking those observed in raptor1b mutants at the level of both plant growth and actin dynamics. Exogenous feeding of adenine could partially restore ATP levels and actin dynamics in TORC1-deficient plants. Thus, these data support an important role for TORC1 in coordinating ATP homeostasis and actin dynamics in plant cells.


Asunto(s)
Citoesqueleto de Actina , Adenosina Trifosfato , Proteínas de Arabidopsis , Arabidopsis , Diana Mecanicista del Complejo 1 de la Rapamicina , Fosfatidilinositol 3-Quinasas , Citoesqueleto de Actina/metabolismo , Actinas , Adenosina Trifosfato/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/fisiología , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/fisiología
3.
J Exp Bot ; 75(12): 3731-3747, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38676707

RESUMEN

The plant cell wall provides a strong yet flexible barrier to protect cells from the external environment. Modifications of the cell wall, either during development or under stress conditions, can induce cell wall integrity responses and ultimately lead to alterations in gene expression, hormone production, and cell wall composition. These changes in cell wall composition presumably require remodelling of the secretory pathway to facilitate synthesis and secretion of cell wall components and cell wall synthesis/remodelling enzymes from the Golgi apparatus. Here, we used a combination of live-cell confocal imaging and transmission electron microscopy to examine the short-term and constitutive impact of isoxaben, which reduces cellulose biosynthesis, and Driselase, a cocktail of cell-wall-degrading fungal enzymes, on cellular processes during cell wall integrity responses in Arabidopsis. We show that both treatments altered organelle morphology and triggered rebalancing of the secretory pathway to promote secretion while reducing endocytic trafficking. The actin cytoskeleton was less dynamic following cell wall modification, and organelle movement was reduced. These results demonstrate active remodelling of the endomembrane system and actin cytoskeleton following changes to the cell wall.


Asunto(s)
Arabidopsis , Pared Celular , Pared Celular/metabolismo , Arabidopsis/metabolismo , Arabidopsis/fisiología , Endocitosis/fisiología , Transporte de Proteínas , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Benzamidas
4.
J Exp Bot ; 74(12): 3425-3448, 2023 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-36961357

RESUMEN

Plant cells are surrounded by strong yet flexible polysaccharide-based cell walls that support cells while also allowing growth by cell expansion. Plant cell wall research has advanced tremendously in recent years. Sequenced genomes of model and crop plants have facilitated cataloguing and characterization of many enzymes involved in cell wall synthesis. Structural information has been generated for several important cell wall-synthesizing enzymes. Important tools have been developed including antibodies raised against a variety of cell wall polysaccharides and glycoproteins, collections of enzyme clones and synthetic glycan arrays for characterizing enzymes, herbicides that specifically affect cell wall synthesis, live-cell imaging probes to track cell wall synthesis, and an inducible secondary cell wall synthesis system. Despite these advances, and often because of the new information they provide, many open questions about plant cell wall polysaccharide synthesis persist. This article highlights some of the key questions that remain open, reviews the data supporting different hypotheses that address these questions, and discusses technological developments that may answer these questions in the future.


Asunto(s)
Células Vegetales , Plantas , Membrana Celular , Pared Celular/química , Polisacáridos
5.
J Exp Bot ; 74(1): 1-6, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36563102

RESUMEN

In the summer of 2021, we held a community workshop at the International Congress of Arabidopsis Research (ICAR) aimed at early career researchers and focused on values-based lab leadership. Here, we elaborate on ideas emerging from the workshop that we hope will allow current and future group leaders to reflect on and adjust to the rapidly evolving nature of the academic scientific enterprise.


Asunto(s)
Liderazgo , Creación de Capacidad , Mentores , Investigación/tendencias
6.
Proc Natl Acad Sci U S A ; 117(41): 25880-25889, 2020 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-32989160

RESUMEN

The plant trans-Golgi network (TGN) is a central trafficking hub where secretory, vacuolar, recycling, and endocytic pathways merge. Among currently known molecular players involved in TGN transport, three different adaptor protein (AP) complexes promote vesicle generation at the TGN with different cargo specificity and destination. Yet, it remains unresolved how sorting into diverging vesicular routes is spatially organized. Here, we study the family of Arabidopsis thaliana Epsin-like proteins, which are accessory proteins to APs facilitating vesicle biogenesis. By comprehensive molecular, cellular, and genetic analysis of the EPSIN gene family, we identify EPSIN1 and MODIFIED TRANSPORT TO THE VACUOLE1 (MTV1) as its only TGN-associated members. Despite their large phylogenetic distance, they perform overlapping functions in vacuolar and secretory transport. By probing their relationship with AP complexes, we find that they define two molecularly independent pathways: While EPSIN1 associates with AP-1, MTV1 interacts with AP-4, whose function is required for MTV1 recruitment. Although both EPSIN1/AP-1 and MTV1/AP-4 pairs reside at the TGN, high-resolution microscopy reveals them as spatially separate entities. Our results strongly support the hypothesis of molecularly, functionally, and spatially distinct subdomains of the plant TGN and suggest that functional redundancy can be achieved through parallelization of molecularly distinct but functionally overlapping pathways.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Red trans-Golgi/metabolismo , Proteínas Adaptadoras del Transporte Vesicular/genética , Arabidopsis/clasificación , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Unión Proteica , Transporte de Proteínas , Vacuolas/genética , Vacuolas/metabolismo , Red trans-Golgi/genética
7.
Plant Cell ; 31(12): 3092-3112, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31575724

RESUMEN

Xanthophylls are a class of carotenoids that are important micronutrients for humans. They are often found esterified with fatty acids in fruits, vegetables, and certain grains, including bread wheat (Triticum aestivum). Esterification promotes the sequestration and accumulation of carotenoids, thereby enhancing stability, particularly in tissues such as in harvested wheat grain. Here, we report on a plant xanthophyll acyltransferase (XAT) that is both necessary and sufficient for xanthophyll esterification in bread wheat grain. XAT contains a canonical Gly-Asp-Ser-Leu (GDSL) motif and is encoded by a member of the GDSL esterase/lipase gene family. Genetic evidence from allelic variants of wheat and transgenic rice (Oryza sativa) calli demonstrated that XAT catalyzes the formation of xanthophyll esters. XAT has broad substrate specificity and can esterify lutein, ß-cryptoxanthin, and zeaxanthin using multiple acyl donors, yet it has a preference for triacylglycerides, indicating that the enzyme acts via transesterification. A conserved amino acid, Ser-37, is required for activity. Despite xanthophylls being synthesized in plastids, XAT accumulated in the apoplast. Based on analysis of substrate preferences and xanthophyll ester formation in vitro and in vivo using xanthophyll-accumulating rice callus, we propose that disintegration of the cellular structure during wheat grain desiccation facilitates access to lutein-promoting transesterification.plantcell;31/12/3092/FX1F1fx1.


Asunto(s)
Hidrolasas de Éster Carboxílico/metabolismo , Luteína/metabolismo , Triticum/enzimología , Xantófilas/metabolismo , Alelos , beta-Criptoxantina/metabolismo , Biocatálisis , Hidrolasas de Éster Carboxílico/genética , Carotenoides/metabolismo , Esterificación , Ésteres/metabolismo , Especificidad de Órganos/genética , Oryza/metabolismo , Plantas Modificadas Genéticamente , Plastidios/metabolismo , Triglicéridos/metabolismo , Triticum/embriología , Triticum/genética , Triticum/metabolismo , Zeaxantinas/metabolismo
8.
Plant Cell ; 31(9): 2010-2034, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31266899

RESUMEN

The order of enzymatic activity across Golgi cisternae is essential for complex molecule biosynthesis. However, an inability to separate Golgi cisternae has meant that the cisternal distribution of most resident proteins, and their underlying localization mechanisms, are unknown. Here, we exploit differences in surface charge of intact cisternae to perform separation of early to late Golgi subcompartments. We determine protein and glycan abundance profiles across the Golgi; over 390 resident proteins are identified, including 136 new additions, with over 180 cisternal assignments. These assignments provide a means to better understand the functional roles of Golgi proteins and how they operate sequentially. Protein and glycan distributions are validated in vivo using high-resolution microscopy. Results reveal distinct functional compartmentalization among resident Golgi proteins. Analysis of transmembrane proteins shows several sequence-based characteristics relating to pI, hydrophobicity, Ser abundance, and Phe bilayer asymmetry that change across the Golgi. Overall, our results suggest that a continuum of transmembrane features, rather than discrete rules, guide proteins to earlier or later locations within the Golgi stack.


Asunto(s)
Aparato de Golgi/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Aparato de Golgi/ultraestructura , Interacciones Hidrofóbicas e Hidrofílicas , Membranas Intracelulares , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Polisacáridos/química , Polisacáridos/metabolismo , Proteoma
9.
Plant Cell Physiol ; 62(12): 1828-1838, 2021 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-34245306

RESUMEN

Cellulose is one of the most abundant biopolymers on Earth. It provides mechanical support to growing plant cells and important raw materials for paper, textiles and biofuel feedstocks. Cellulose biosynthesis inhibitors (CBIs) are invaluable tools for studying cellulose biosynthesis and can be important herbicides for controlling weed growth. Here, we review CBIs with particular focus on the most widely used CBIs and recently discovered CBIs. We discuss the effects of these CBIs on plant growth and development and plant cell biology and summarize what is known about the mode of action of these different CBIs.


Asunto(s)
Celulosa/antagonistas & inhibidores , Plantas/metabolismo , Celulosa/biosíntesis , Desarrollo de la Planta
10.
Plant Cell ; 29(10): 2433-2449, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28947492

RESUMEN

The evolution of the plant vasculature was essential for the emergence of terrestrial life. Xylem vessels are solute-transporting elements in the vasculature that possess secondary wall thickenings deposited in intricate patterns. Evenly dispersed microtubule (MT) bands support the formation of these wall thickenings, but how the MTs direct cell wall synthesis during this process remains largely unknown. Cellulose is the major secondary wall constituent and is synthesized by plasma membrane-localized cellulose synthases (CesAs) whose catalytic activity propels them through the membrane. We show that the protein CELLULOSE SYNTHASE INTERACTING1 (CSI1)/POM2 is necessary to align the secondary wall CesAs and MTs during the initial phase of xylem vessel development in Arabidopsis thaliana and rice (Oryza sativa). Surprisingly, these MT-driven patterns successively become imprinted and sufficient to sustain the continued progression of wall thickening in the absence of MTs and CSI1/POM2 function. Hence, two complementary principles underpin wall patterning during xylem vessel development.


Asunto(s)
Pared Celular/metabolismo , Xilema/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Membrana Celular/metabolismo , Pared Celular/genética , Celulosa/metabolismo , Glucosiltransferasas/metabolismo , Microtúbulos/metabolismo , Xilema/genética
11.
Proc Natl Acad Sci U S A ; 114(16): 4261-4266, 2017 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-28373556

RESUMEN

In plants, L-arabinose (Ara) is a key component of cell wall polymers, glycoproteins, as well as flavonoids, and signaling peptides. Whereas the majority of Ara found in plant glycans occurs as a furanose ring (Araf), the activated precursor has a pyranose ring configuration (UDP-Arap). The biosynthesis of UDP-Arap mainly occurs via the epimerization of UDP-xylose (UDP-Xyl) in the Golgi lumen. Given that the predominant Ara form found in plants is Araf, UDP-Arap must exit the Golgi to be interconverted into UDP-Araf by UDP-Ara mutases that are located outside on the cytosolic surface of the Golgi. Subsequently, UDP-Araf must be transported back into the lumen. This step is vital because glycosyltransferases, the enzymes mediating the glycosylation reactions, are located within the Golgi lumen, and UDP-Arap, synthesized within the Golgi, is not their preferred substrate. Thus, the transport of UDP-Araf into the Golgi is a prerequisite. Although this step is critical for cell wall biosynthesis and the glycosylation of proteins and signaling peptides, the identification of these transporters has remained elusive. In this study, we present data demonstrating the identification and characterization of a family of Golgi-localized UDP-Araf transporters in Arabidopsis The application of a proteoliposome-based transport assay revealed that four members of the nucleotide sugar transporter (NST) family can efficiently transport UDP-Araf in vitro. Subsequent analysis of mutant lines affected in the function of these NSTs confirmed their role as UDP-Araf transporters in vivo.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Aparato de Golgi/metabolismo , Azúcares de Uridina Difosfato/metabolismo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Transporte Biológico , Pared Celular/metabolismo , Regulación de la Expresión Génica de las Plantas
12.
Plant Physiol ; 178(1): 101-117, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30049747

RESUMEN

Upon illumination, etiolated seedlings experience a transition from heterotrophic to photoautotrophic growth. During this process, the tetrapyrrole biosynthesis pathway provides chlorophyll for photosynthesis. This pathway has to be tightly controlled to prevent the accumulation of photoreactive metabolites and to provide stoichiometric amounts of chlorophyll for its incorporation into photosynthetic protein complexes. Therefore, plants have evolved regulatory mechanisms to synchronize the biosynthesis of chlorophyll and chlorophyll-binding proteins. Two phytochrome-interacting factors (PIF1 and PIF3) and the DELLA proteins, which are controlled by the gibberellin pathway, are key regulators of this process. Here, we show that impairment of TARGET OF RAPAMYCIN (TOR) activity in Arabidopsis (Arabidopsis thaliana), either by mutation of the TOR complex component RAPTOR1B or by treatment with TOR inhibitors, leads to a significantly reduced accumulation of the photoreactive chlorophyll precursor protochlorophyllide in darkness but an increased greening rate of etiolated seedlings after exposure to light. Detailed profiling of metabolic, transcriptomic, and physiological parameters revealed that the TOR-repressed lines not only grow slower, they grow in a nutrient-saving mode, which allows them to resist longer periods of low nutrient availability. Our results also indicated that RAPTOR1B acts upstream of the gibberellin-DELLA pathway and its mutation complements the repressed greening phenotype of pif1 and pif3 after etiolation.


Asunto(s)
Proteínas de Arabidopsis/genética , Clorofila/metabolismo , Etiolado/genética , Nutrientes/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/antagonistas & inhibidores , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Etiolado/efectos de la radiación , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Luz , Mutación , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3 , Fotosíntesis/genética , Fotosíntesis/efectos de la radiación , Plantas Modificadas Genéticamente , Protoclorofilida/metabolismo
13.
Plant Cell ; 27(3): 607-19, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25794936

RESUMEN

Developing plant embryos depend on nutrition from maternal tissues via the seed coat and endosperm, but the mechanisms that supply nutrients to plant embryos have remained elusive. Sucrose, the major transport form of carbohydrate in plants, is delivered via the phloem to the maternal seed coat and then secreted from the seed coat to feed the embryo. Here, we show that seed filling in Arabidopsis thaliana requires the three sucrose transporters SWEET11, 12, and 15. SWEET11, 12, and 15 exhibit specific spatiotemporal expression patterns in developing seeds, but only a sweet11;12;15 triple mutant showed severe seed defects, which include retarded embryo development, reduced seed weight, and reduced starch and lipid content, causing a "wrinkled" seed phenotype. In sweet11;12;15 triple mutants, starch accumulated in the seed coat but not the embryo, implicating SWEET-mediated sucrose efflux in the transfer of sugars from seed coat to embryo. This cascade of sequentially expressed SWEETs provides the feeding pathway for the plant embryo, an important feature for yield potential.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/embriología , Arabidopsis/metabolismo , Endospermo/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Fenómenos Fisiológicos de la Nutrición , Animales , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Transporte Biológico/efectos de los fármacos , Transporte Biológico/genética , Endospermo/genética , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Proteínas de Transporte de Membrana/genética , Modelos Biológicos , Mutación/genética , Fenómenos Fisiológicos de la Nutrición/efectos de los fármacos , Oocitos/metabolismo , Especificidad de Órganos/efectos de los fármacos , Especificidad de Órganos/genética , Fenotipo , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Almidón/metabolismo , Sacarosa/metabolismo , Sacarosa/farmacología , Factores de Tiempo , Xenopus laevis
14.
Physiol Plant ; 164(1): 17-26, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29418000

RESUMEN

The plant cell wall surrounds and protects the cells. To divide, plant cells must synthesize a new cell wall to separate the two daughter cells. The cell plate is a transient polysaccharide-based compartment that grows between daughter cells and gives rise to the new cell wall. Cellulose constitutes a key component of the cell wall, and mutants with defects in cellulose synthesis commonly share phenotypes with cytokinesis-defective mutants. However, despite the importance of cellulose in the cell plate and the daughter cell wall, many open questions remain regarding the timing and regulation of cellulose synthesis during cell division. These questions represent a critical gap in our knowledge of cell plate assembly, cell division and growth. Here, we review what is known about cellulose synthesis at the cell plate and in the newly formed cross-wall and pose key questions about the molecular mechanisms that govern these processes. We further provide an outlook discussing outstanding questions and possible future directions for this field of research.


Asunto(s)
Celulosa/metabolismo , División Celular/fisiología , Pared Celular/metabolismo , Citocinesis/fisiología , Células Vegetales/metabolismo
15.
Plant J ; 88(4): 531-541, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27420177

RESUMEN

Cytokinesis, the partitioning of the cytoplasm following nuclear division, requires extensive coordination between cell cycle cues, membrane trafficking and microtubule dynamics. Plant cytokinesis occurs within a transient membrane compartment known as the cell plate, to which vesicles are delivered by a plant-specific microtubule array, the phragmoplast. While membrane proteins required for cytokinesis are known, how these are coordinated with microtubule dynamics and regulated by cell cycle cues remains unclear. Here, we document physical and genetic interactions between Transport Protein Particle II (TRAPPII) tethering factors and microtubule-associated proteins of the PLEIADE/AtMAP65 family. These interactions do not specifically affect the recruitment of either TRAPPII or MAP65 proteins to the cell plate or midzone. Rather, and based on single versus double mutant phenotypes, it appears that they are required to coordinate cytokinesis with the nuclear division cycle. As MAP65 family members are known to be targets of cell cycle-regulated kinases, our results provide a conceptual framework for how membrane and microtubule dynamics may be coordinated with each other and with the nuclear cycle during plant cytokinesis.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Ciclo Celular/fisiología , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Ciclo Celular/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Citocinesis/genética , Citocinesis/fisiología , Proteínas Asociadas a Microtúbulos/genética
16.
Plant Cell Physiol ; 58(3): 478-484, 2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-28100648

RESUMEN

Membrane contact sites are recognized across eukaryotic systems as important nanostructures. Endoplasmic reticulum (ER)-plasma membrane (PM) contact sites (EPCS) are involved in excitation-contraction coupling, signaling, and plant responses to stress. In this report, we perform a multiscale structural analysis of Arabidopsis EPCS that combines live cell imaging, quantitative transmission electron microscopy (TEM) and electron tomography over a developmental gradient. To place EPCS in the context of the entire cortical ER, we examined green fluorescent protein (GFP)-HDEL in living cells over a developmental gradient, then Synaptotagmin1 (SYT1)-GFP was used as a specific marker of EPCS. In all tissues examined, young, rapidly elongating cells showed lamellar cortical ER and higher density of SYT1-GFP puncta, while in mature cells the cortical ER network was tubular, highly dynamic and had fewer SYT1-labeled puncta. The higher density of EPCS in young cells was verified by quantitative TEM of cryo-fixed tissues. For all cell types, the size of each EPCS had a consistent range in length along the PM from 50 to 300 nm, with microtubules and ribosomes excluded from the EPCS. The structural characterization of EPCS in different plant tissues, and the correlation of EPCS densities over developmental gradients illustrate how ER-PM communication evolves in response to cellular expansion.


Asunto(s)
Membrana Celular/metabolismo , Membrana Celular/ultraestructura , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/ultraestructura , Arabidopsis/metabolismo , Arabidopsis/ultraestructura , Proteínas Fluorescentes Verdes/metabolismo , Proteínas Fluorescentes Verdes/ultraestructura , Microscopía Electrónica de Transmisión , Microtúbulos/metabolismo , Microtúbulos/ultraestructura , Ribosomas/metabolismo , Ribosomas/ultraestructura
17.
J Proteome Res ; 15(3): 900-13, 2016 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-26781341

RESUMEN

The plant plasma membrane is the interface between the cell and its environment undertaking a range of important functions related to transport, signaling, cell wall biosynthesis, and secretion. Multiple proteomic studies have attempted to capture the diversity of proteins in the plasma membrane using biochemical fractionation techniques. In this study, two-phase partitioning was combined with free-flow electrophoresis to produce a population of highly purified plasma membrane vesicles that were subsequently characterized by tandem mass spectroscopy. This combined high-quality plasma membrane isolation technique produced a reproducible proteomic library of over 1000 proteins with an extended dynamic range including plasma membrane-associated proteins. The approach enabled the detection of a number of putative plasma membrane proteins not previously identified by other studies, including peripheral membrane proteins. Utilizing multiple data sources, we developed a PM-confidence score to provide a value indicating association to the plasma membrane. This study highlights over 700 proteins that, while seemingly abundant at the plasma membrane, are mostly unstudied. To validate this data set, we selected 14 candidates and transiently localized 13 to the plasma membrane using a fluorescent tag. Given the importance of the plasma membrane, this data set provides a valuable tool to further investigate important proteins. The mass spectrometry data are available via ProteomeXchange, identifier PXD001795.


Asunto(s)
Proteínas de Arabidopsis/aislamiento & purificación , Arabidopsis/metabolismo , Proteínas de la Membrana/aislamiento & purificación , Proteoma/aislamiento & purificación , Plantones/metabolismo , Proteínas de Arabidopsis/metabolismo , Membrana Celular/metabolismo , Electroforesis , Electroforesis en Gel Bidimensional , Proteínas de la Membrana/metabolismo , Proteoma/metabolismo , Espectrometría de Masas en Tándem , Vesículas Transportadoras/metabolismo
18.
Plant Physiol ; 168(1): 132-43, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25792253

RESUMEN

Eukaryotic endoplasmic reticulum (ER)-plasma membrane (PM) contact sites are evolutionarily conserved microdomains that have important roles in specialized metabolic functions such as ER-PM communication, lipid homeostasis, and Ca(2+) influx. Despite recent advances in knowledge about ER-PM contact site components and functions in yeast (Saccharomyces cerevisiae) and mammals, relatively little is known about the functional significance of these structures in plants. In this report, we characterize the Arabidopsis (Arabidopsis thaliana) phospholipid binding Synaptotagmin1 (SYT1) as a plant ortholog of the mammal extended synaptotagmins and yeast tricalbins families of ER-PM anchors. We propose that SYT1 functions at ER-PM contact sites because it displays a dual ER-PM localization, it is enriched in microtubule-depleted regions at the cell cortex, and it colocalizes with Vesicle-Associated Protein27-1, a known ER-PM marker. Furthermore, biochemical and physiological analyses indicate that SYT1 might function as an electrostatic phospholipid anchor conferring mechanical stability in plant cells. Together, the subcellular localization and functional characterization of SYT1 highlights a putative role of plant ER-PM contact site components in the cellular adaptation to environmental stresses.


Asunto(s)
Adaptación Fisiológica , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Membrana Celular/metabolismo , Retículo Endoplásmico/metabolismo , Estrés Mecánico , Sinaptotagmina I/metabolismo , Proteínas de Arabidopsis/química , Membrana Celular/ultraestructura , Retículo Endoplásmico/ultraestructura , Microtúbulos/metabolismo , Modelos Biológicos , Fosfatos de Fosfatidilinositol/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Transporte de Proteínas , Sinaptotagmina I/química
19.
J Exp Bot ; 67(2): 543-52, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26552883

RESUMEN

As sessile organisms, plants require mechanisms to sense and respond to changes in their environment, including both biotic and abiotic factors. One of the most common plant adaptations to environmental changes is differential regulation of growth, which results in growth either away from adverse conditions or towards more favorable conditions. As cell walls shape plant growth, this differential growth response must be accompanied by alterations to the plant cell wall. Here, we review the impact of four abiotic factors (osmotic conditions, ionic stress, light, and temperature) on the synthesis of cellulose, an important component of the plant cell wall. Understanding how different abiotic factors influence cellulose production and addressing key questions that remain in this field can provide crucial information to cope with the need for increased crop production under the mounting pressures of a growing world population and global climate change.


Asunto(s)
Celulosa/biosíntesis , Desarrollo de la Planta , Adaptación Fisiológica , Ambiente , Iones/metabolismo , Luz , Presión Osmótica , Estrés Fisiológico , Temperatura
20.
Plant Cell ; 25(7): 2633-46, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23832588

RESUMEN

The secretion of cell wall polysaccharides through the trans-Golgi network (TGN) is required for plant cell elongation. However, the components mediating the post-Golgi secretion of pectin and hemicellulose, the two major cell wall polysaccharides, are largely unknown. We identified evolutionarily conserved YPT/RAB GTPase Interacting Protein 4a (YIP4a) and YIP4b (formerly YIP2), which form a TGN-localized complex with ECHIDNA (ECH) in Arabidopsis thaliana. The localization of YIP4 and ECH proteins at the TGN is interdependent and influences the localization of VHA-a1 and SYP61, which are key components of the TGN. YIP4a and YIP4b act redundantly, and the yip4a yip4b double mutants have a cell elongation defect. Genetic, biochemical, and cell biological analyses demonstrate that the ECH/YIP4 complex plays a key role in TGN-mediated secretion of pectin and hemicellulose to the cell wall in dark-grown hypocotyls and in secretory cells of the seed coat. In keeping with these observations, Fourier transform infrared microspectroscopy analysis revealed that the ech and yip4a yip4b mutants exhibit changes in their cell wall composition. Overall, our results reveal a TGN subdomain defined by ECH/YIP4 that is required for the secretion of pectin and hemicellulose and distinguishes the role of the TGN in secretion from its roles in endocytic and vacuolar trafficking.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Pared Celular/metabolismo , Polisacáridos/metabolismo , Red trans-Golgi/metabolismo , Secuencia de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/clasificación , Proteínas de Arabidopsis/genética , Pared Celular/genética , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Microscopía Confocal , Datos de Secuencia Molecular , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Mutación , Filogenia , Plantas Modificadas Genéticamente , Unión Proteica , Homología de Secuencia de Aminoácido , Técnicas del Sistema de Dos Híbridos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA