Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Sports Sci ; 36(12): 1363-1370, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28895489

RESUMEN

Moderate physical exercise acts at molecular and behavioural levels, such as interfering in neuroplasticity, cell death, neurogenesis, cognition and motor functions. Therefore, the aim of this study is to analyse the cellular effects of moderate treadmill running upon substantia nigra during early neurodegeneration. Aged male Lewis rats (9-month-old) were exposed to rotenone 1mg/kg/day (8 weeks) and 6 weeks of moderate treadmill running, beginning 4 weeks after rotenone exposure. Substantia nigra was extracted and submitted to proteasome and antioxidant enzymes activities, hydrogen peroxide levels and Western blot to evaluate tyrosine hydroxylase (TH), alpha-synuclein, Tom-20, PINK1, TrkB, SLP1, CRMP-2, Rab-27b, LC3II and Beclin-1 level. It was demonstrated that moderate treadmill running, practiced during early neurodegeneration, prevented the increase of alpha-synuclein and maintained the levels of TH unaltered in substantia nigra of aged rats. Physical exercise also stimulated autophagy and prevented impairment of mitophagy, but decreased proteasome activity in rotenone-exposed aged rats. Physical activity also prevented H2O2 increase during early neurodegeneration, although the involved mechanism remains to be elucidated. TrkB levels and its anterograde trafficking seem not to be influenced by moderate treadmill running. In conclusion, moderate physical training could prevent early neurodegeneration in substantia nigra through the improvement of autophagy and mitophagy.


Asunto(s)
Enfermedades Neurodegenerativas/fisiopatología , Condicionamiento Físico Animal , Carrera , Sustancia Negra/patología , Animales , Autofagia , Modelos Animales de Enfermedad , Peróxido de Hidrógeno/metabolismo , Masculino , Mitofagia , Complejo de la Endopetidasa Proteasomal/metabolismo , Ratas Endogámicas Lew , Rotenona/toxicidad , Tirosina 3-Monooxigenasa/metabolismo , alfa-Sinucleína/metabolismo
2.
Neuroscience ; 419: 5-13, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31491505

RESUMEN

Disrupted neuronal intracellular trafficking is often related with protein aggregates present in the brain during neurodegenerative diseases such as Alzheimer's. Impairment of intracellular transport may be related to Rab proteins, a class of small GTPases responsible for trafficking of organelles and vesicles. Deficit in trafficking between the endoplasmic reticulum (ER) and Golgi apparatus mediated by Rab1 and 6 may lead to increased unfolded protein response (UPR) and ER stress and remodeling. Thus, the objective of this study is to analyze the levels of Rabs 1 and 6 in the hippocampus of aged rats and in vitro during protein aggregation promoted by exposure to rotenone. Levels of Rabs 1 and 6, ATF6 and CHOP were measured by western blotting. PDI immunolabeling and ER-Tracker were employed to study ER morphology. MTT was used to analyze cell metabolism. Rab1 levels and cell viability decreased, whereas Rab6, UPR proteins and ER remodeling increased during protein aggregation, which were restored to normal levels after exogenous expression of Rab1.These results suggest that decrease of Rab1 levels contributes to ER stress and remodeling, while maintaining the elevated expression of Rab1 prevented impairment of cell viability during protein aggregation. In conclusion, Rab1 is a significant player to maintain intracellular homeostasis and its expression may mitigate ER dysfunction in the context of neurodegeneration-related protein inclusions.


Asunto(s)
Estrés del Retículo Endoplásmico/fisiología , Retículo Endoplásmico/metabolismo , Hipocampo/metabolismo , Rotenona/farmacología , Proteínas de Unión al GTP rab1/metabolismo , Animales , Línea Celular , Aparato de Golgi/metabolismo , Neuronas/metabolismo , Agregado de Proteínas , Transporte de Proteínas/fisiología , Ratas
3.
Neurotox Res ; 35(2): 410-420, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30276717

RESUMEN

Proteostasis and oxidative stress were evaluated in motor cortex and spinal cord of aged Lewis rats exposed to 1 mg/kg/day of rotenone during 4 or 8 weeks, prior or after practicing three protocols of mild treadmill running. Results demonstrated that exercise done after the beginning of neurodegeneration reverted the increased oxidative stress (measured by H2O2 levels and SOD activity), increased neuron strength, and improved proteostasis in motor cortex. Spinal cord was not affected. Treadmill running practiced before neurodegeneration protected cortical motor neurons of the rotenone-exposed rats; but in this case, oxidative stress was not altered, whereas proteasome activity was increased and autophagy decreased. Spinal cord was not protected when exercise was practiced before neurodegeneration. Prolonged treadmill running (10 weeks) increased oxidative stress, autophagy, and proteasome activity, whereas neuron viability was decreased in motor cortex. In spinal cord, this protocol decreased oxidative stress and increased proteasome activity. Major conclusions were that treadmill running practiced before or after the beginning of neurodegeneration may protect motor cortex neurons, whereas prolonged mild running seems to be beneficial for spinal cord.


Asunto(s)
Prueba de Esfuerzo/métodos , Corteza Motora/metabolismo , Degeneración Nerviosa/metabolismo , Estrés Oxidativo/fisiología , Condicionamiento Físico Animal/fisiología , Proteostasis/fisiología , Animales , Insecticidas/toxicidad , Masculino , Corteza Motora/efectos de los fármacos , Degeneración Nerviosa/inducido químicamente , Degeneración Nerviosa/terapia , Estrés Oxidativo/efectos de los fármacos , Condicionamiento Físico Animal/métodos , Proteostasis/efectos de los fármacos , Ratas , Ratas Endogámicas Lew , Rotenona/toxicidad
4.
IBRO Rep ; 1: 19-31, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30135925

RESUMEN

Physical exercise can attenuate the effects of aging on the central nervous system by increasing the expression of neurotrophins such as brain-derived neurotrophic factor (BDNF), which promotes dendritic branching and enhances synaptic machinery, through interaction with its receptor TrkB. TrkB receptors are synthesized in the cell body and are transported to the axonal terminals and anchored to plasma membrane, through SLP1, CRMP2 and Rab27B, associated with KIF1B. Retrograde trafficking is made by EDH-4 together with dynactin and dynein molecular motors. In the present study it was found that early neurodegeneration is accompanied by decrease in BDNF signaling, in the absence of hyperphosphorylated tau aggregation, in hippocampus of 11 months old Lewis rats exposed to rotenone. It was also demonstrated that moderate physical activity (treadmill running, during 6 weeks, concomitant to rotenone exposure) prevents the impairment of BDNF system in aged rats, which may contribute to delay neurodegeneration. In conclusion, decrease in BDNF and TrkB vesicles occurs before large aggregate-like p-Tau are formed and physical activity applied during early neurodegeneration may be of relevance to prevent BDNF system decay.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA