Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Am J Respir Crit Care Med ; 195(3): 339-348, 2017 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-27500981

RESUMEN

RATIONALE: Ventilator-induced diaphragm dysfunction is a significant contributor to weaning difficulty in ventilated critically ill patients. It has been hypothesized that electrically pacing the diaphragm during mechanical ventilation could reduce diaphragm dysfunction. OBJECTIVES: We tested a novel, central line catheter-based, transvenous phrenic nerve pacing therapy for protecting the diaphragm in sedated and ventilated pigs. METHODS: Eighteen Yorkshire pigs were studied. Six pigs were sedated and mechanically ventilated for 2.5 days with pacing on alternate breaths at intensities that reduced the ventilator pressure-time product by 20-30%. Six matched subjects were similarly sedated and ventilated but were not paced. Six pigs served as never-ventilated, never-paced control animals. MEASUREMENTS AND MAIN RESULTS: Cumulative duration of pacing therapy ranged from 19.7 to 35.7 hours. Diaphragm thickness assessed by ultrasound and normalized to initial value showed a significant decline in ventilated-not paced but not in ventilated-paced subjects (0.84 [interquartile range (IQR), 0.78-0.89] vs. 1.10 [IQR, 1.02-1.24]; P = 0.001). Compared with control animals (24.6 µm2/kg; IQR, 21.6-26.0), median myofiber cross-sectional areas normalized to weight and sarcomere length were significantly smaller in the ventilated-not paced (17.9 µm2/kg; IQR, 15.3-23.7; P = 0.005) but not in the ventilated-paced group (24.9 µm2/kg; IQR, 16.6-27.3; P = 0.351). After 60 hours of mechanical ventilation all six ventilated-paced subjects tolerated 8 minutes of intense phrenic stimulation, whereas three of six ventilated-not paced subjects did not (P = 0.055). There was a nonsignificant decrease in diaphragm tetanic force production over the experiment in the ventilated-paced and ventilated-not paced groups. CONCLUSIONS: These results suggest that early transvenous phrenic nerve pacing may mitigate ventilator-induced diaphragm dysfunction.


Asunto(s)
Cateterismo Venoso Central/métodos , Diafragma/fisiopatología , Terapia por Estimulación Eléctrica/métodos , Atrofia Muscular/prevención & control , Nervio Frénico/fisiología , Respiración Artificial/efectos adversos , Respiración Artificial/métodos , Animales , Modelos Animales de Enfermedad , Terapia por Estimulación Eléctrica/instrumentación , Atrofia Muscular/etiología , Atrofia Muscular/fisiopatología , Porcinos
2.
Crit Care Med ; 45(7): e691-e694, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28441238

RESUMEN

OBJECTIVES: Over 30% of critically ill patients on positive-pressure mechanical ventilation have difficulty weaning from the ventilator, many of whom acquire ventilator-induced diaphragm dysfunction. Temporary transvenous phrenic nerve pacing using a novel electrode-bearing catheter may provide a means to prevent diaphragm atrophy, to strengthen an atrophied diaphragm, and mitigate the harms of mechanical ventilation. We tested the initial safety, feasibility, and impact on ventilation of this novel approach. DESIGN: First-in-Humans case series. SETTING: Angiogram suite. PATIENTS: Twenty-four sedated, mechanically ventilated patients immediately prior to an elective atrial septal defect repair procedure. INTERVENTIONS: A 9.5-Fr central venous catheter with 19 embedded electrodes was placed via Seldinger technique into the left subclavian vein and superior vena cava and evaluated for up to 90 minutes. The electrode combinations determined to provide best transvenous stimulation of the right and left phrenic nerves were activated in synchrony with mechanically ventilated breaths. MEASUREMENTS AND MAIN RESULTS: One patient could not be tested for reasons unrelated to the device. In the 23 patients who underwent the full protocol, transvenous stimulation activated the diaphragm in 22 of 23 (96%) left phrenic capture attempts and 20 of 23 (87%) right phrenic capture attempts. In one subject, a congenital left-sided superior vena cava precluded right-sided capture. Significant reductions in ventilator pressure-time-product were achieved during stimulation assisted breaths in all 22 paced subjects (range, 9.9-48.6%; p < 0.001). There were no adverse events either immediately or at 2-week follow-up. CONCLUSIONS: In this First-in-Human series, diaphragm pacing with a temporary catheter was safe and effectively contributed to ventilation in conjunction with a mechanical ventilator.


Asunto(s)
Diafragma/inervación , Terapia por Estimulación Eléctrica/métodos , Nervio Frénico , Respiración Artificial/efectos adversos , Parálisis Respiratoria/etiología , Parálisis Respiratoria/cirugía , Terapia por Estimulación Eléctrica/instrumentación , Humanos , Neuroestimuladores Implantables
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA