Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
PLoS Comput Biol ; 20(5): e1011605, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38805569

RESUMEN

Central in the study of population codes, coordinated ensemble spiking activity is widely observable in neural recordings with hypothesized roles in robust stimulus representation, interareal communication, and learning and memory formation. Model-free measures of synchrony characterize coherent pairwise activity but not higher-order interactions, a limitation transcended by statistical models of ensemble spiking activity. However, existing model-based analyses often impose assumptions about the relevance of higher-order interactions and require repeated trials to characterize dynamics in the correlational structure of ensemble activity. To address these shortcomings, we propose an adaptive greedy filtering algorithm based on a discretized mark point-process model of ensemble spiking and a corresponding statistical inference framework to identify significant higher-order coordination. In the course of developing a precise statistical test, we show that confidence intervals can be constructed for greedily estimated parameters. We demonstrate the utility of our proposed methods on simulated neuronal assemblies. Applied to multi-electrode recordings from human and rat cortical assemblies, our proposed methods provide new insights into the dynamics underlying localized population activity during transitions between brain states.


Asunto(s)
Potenciales de Acción , Algoritmos , Biología Computacional , Modelos Neurológicos , Neuronas , Humanos , Neuronas/fisiología , Ratas , Animales , Potenciales de Acción/fisiología , Simulación por Computador , Red Nerviosa/fisiología , Encéfalo/fisiología
2.
bioRxiv ; 2023 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-37905104

RESUMEN

Central in the study of population codes, coordinated ensemble spiking activity is widely observable in neural recordings with hypothesized roles in robust stimulus representation, interareal communication, and learning and memory formation. Model-free measures of synchrony characterize coherent pairwise activity but not higher-order interactions, a limitation transcended by statistical models of ensemble spiking activity. However, existing model-based analyses often impose assumptions about the relevance of higher-order interactions and require repeated trials to characterize dynamics in the correlational structure of ensemble activity. To address these shortcomings, we propose an adaptive greedy filtering algorithm based on a discretized mark point-process model of ensemble spiking and a corresponding statistical inference framework to identify significant higher-order coordination. In the course of developing a precise statistical test, we show that confidence intervals can be constructed for greedily estimated parameters. We demonstrate the utility of our proposed methods on simulated neuronal assemblies. Applied to multi-electrode recordings from human and rat cortical assemblies, our proposed methods provide new insights into the dynamics underlying localized population activity during transitions between brain states.

3.
Brain Inform ; 10(1): 34, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38052917

RESUMEN

Measures of functional connectivity have played a central role in advancing our understanding of how information is transmitted and processed within the brain. Traditionally, these studies have focused on identifying redundant functional connectivity, which involves determining when activity is similar across different sites or neurons. However, recent research has highlighted the importance of also identifying synergistic connectivity-that is, connectivity that gives rise to information not contained in either site or neuron alone. Here, we measured redundant and synergistic functional connectivity between neurons in the mouse primary auditory cortex during a sound discrimination task. Specifically, we measured directed functional connectivity between neurons simultaneously recorded with calcium imaging. We used Granger Causality as a functional connectivity measure. We then used Partial Information Decomposition to quantify the amount of redundant and synergistic information about the presented sound that is carried by functionally connected or functionally unconnected pairs of neurons. We found that functionally connected pairs present proportionally more redundant information and proportionally less synergistic information about sound than unconnected pairs, suggesting that their functional connectivity is primarily redundant. Further, synergy and redundancy coexisted both when mice made correct or incorrect perceptual discriminations. However, redundancy was much higher (both in absolute terms and in proportion to the total information available in neuron pairs) in correct behavioural choices compared to incorrect ones, whereas synergy was higher in absolute terms but lower in relative terms in correct than in incorrect behavioural choices. Moreover, the proportion of redundancy reliably predicted perceptual discriminations, with the proportion of synergy adding no extra predictive power. These results suggest a crucial contribution of redundancy to correct perceptual discriminations, possibly due to the advantage it offers for information propagation, and also suggest a role of synergy in enhancing information level during correct discriminations.

4.
Commun Biol ; 6(1): 1278, 2023 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-38110605

RESUMEN

Plasticity and homeostatic mechanisms allow neural networks to maintain proper function while responding to physiological challenges. Despite previous work investigating morphological and synaptic effects of brain-derived neurotrophic factor (BDNF), the most prevalent growth factor in the central nervous system, how exposure to BDNF manifests at the network level remains unknown. Here we report that BDNF treatment affects rodent hippocampal network dynamics during development and recovery from glutamate-induced excitotoxicity in culture. Importantly, these effects are not obvious when traditional activity metrics are used, so we delve more deeply into network organization, functional analyses, and in silico simulations. We demonstrate that BDNF partially restores homeostasis by promoting recovery of weak and medium connections after injury. Imaging and computational analyses suggest these effects are caused by changes to inhibitory neurons and connections. From our in silico simulations, we find that BDNF remodels the network by indirectly strengthening weak excitatory synapses after injury. Ultimately, our findings may explain the difficulties encountered in preclinical and clinical trials with BDNF and also offer information for future trials to consider.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Sinapsis , Factor Neurotrófico Derivado del Encéfalo/farmacología , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Células Cultivadas , Sinapsis/metabolismo , Neuronas/fisiología , Ácido Glutámico/metabolismo
5.
Cell Rep ; 39(9): 110878, 2022 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-35649366

RESUMEN

Cortical processing of task-relevant information enables recognition of behaviorally meaningful sensory events. It is unclear how task-related information is represented within cortical networks by the activity of individual neurons and their functional interactions. Here, we use two-photon imaging to record neuronal activity from the primary auditory cortex of mice during a pure-tone discrimination task. We find that a subset of neurons transiently encode sensory information used to inform behavioral choice. Using Granger causality analysis, we show that these neurons form functional networks in which information transmits sequentially. Network structures differ for target versus non-target tones, encode behavioral choice, and differ between correct versus incorrect behavioral choices. Correct behavioral choices are associated with shorter communication timescales, larger functional correlations, and greater information redundancy. In summary, specialized neurons in primary auditory cortex integrate task-related information and form functional networks whose structures encode both sensory input and behavioral choice.


Asunto(s)
Corteza Auditiva , Animales , Corteza Auditiva/fisiología , Ratones , Neuronas/fisiología
6.
Cereb Cortex Commun ; 2(1): tgaa091, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33506209

RESUMEN

Action and perception are closely linked in many behaviors necessitating a close coordination between sensory and motor neural processes so as to achieve a well-integrated smoothly evolving task performance. To investigate the detailed nature of these sensorimotor interactions, and their role in learning and executing the skilled motor task of speaking, we analyzed ECoG recordings of responses in the high-γ band (70-150 Hz) in human subjects while they listened to, spoke, or silently articulated speech. We found elaborate spectrotemporally modulated neural activity projecting in both "forward" (motor-to-sensory) and "inverse" directions between the higher-auditory and motor cortical regions engaged during speaking. Furthermore, mathematical simulations demonstrate a key role for the forward projection in "learning" to control the vocal tract, beyond its commonly postulated predictive role during execution. These results therefore offer a broader view of the functional role of the ubiquitous forward projection as an important ingredient in learning, rather than just control, of skilled sensorimotor tasks.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA