Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Dalton Trans ; 52(47): 17894-17910, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-37975815

RESUMEN

In the present study, the effect of heterovalent Fe3+ ions on the dielectric, pyroelectric, and ferroelectric properties of the (1 - x)AgNbO3-xFeNbO4 (x = 0.005, 0.01, 0.025, 0.05, and 0.1) system was investigated. The substitution of smaller ionic radius Fe3+ in B-sites and the formation of FeNbO4 as a secondary phase contributed to improved dielectric performance, especially the pyroelectric effect, of (1 - x)AgNbO3-xFeNbO4 ceramics by generating electron-rich ceramics. The (1 - x)AgNbO3-xFeNbO4 ceramics were prepared by conventional solid-state sintering. Pure AgNbO3 had a perovskite crystal structure with an orthorhombic crystal system, but the FeNbO4 in (1 - x)AgNbO3-xFeNbO4 ceramics was formed as a secondary phase with a monoclinic structure. In addition, the XRD and Raman spectroscopy data showed that some Fe3+ was substituted into B-sites of AgNbO3. The introduction of FeNbO4 effectively reduced the average grain size from 1.85 ± 0.09 µm to 1.22 ± 0.03 µm for pure AgNbO3 and 0.9AgNbO3-0.1FeNbO4, respectively. In addition, the relative density of the (1 - x)AgNbO3-xFeNbO4 ceramics decreased from 97.96% ± 0.01 for x = 0 to 96.75% ± 0.03 for x = 0.1. The real part of the permittivity ε', at room temperature, increased from 186.6 for x = 0 to a value of 738.7 for x = 0.1. Additionally, the maximum pyroelectric coefficient increased fivefold, reaching values of 2270 nC cm-2 K-1 for x = 0.1. Furthermore, a harvested pyroelectric energy density (W) of 1140 µJ cm-3 for x = 0.025 was achieved, which is appreciably higher than the 840 µJ cm-3 value for x = 0.

2.
Dalton Trans ; 52(14): 4462-4474, 2023 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-36919465

RESUMEN

In this research, AgNbO3 ceramics were produced by two sintering methods: reaction sintering (RS) and conventional solid-state sintering (CSSS). The process was similar for both methods, except that in RS, Ag2O and Nb2O5 precursors were mixed, then formed into pellets, skipping the calcination step, and sintered at 1100 °C for 6 hours. Both prepared ceramics had the same perovskite crystal structure with an orthorhombic crystal system and Pbcm and Pmc21 space groups with similar lattice dynamic vibration modes at room temperature. The average grain size of the polycrystalline samples prepared by RS and CSSS was found to be ∼2.03 ± 0.77 and ∼1.85 ± 0.96 µm, respectively. The relative bulk densities of the ceramics produced by RS and CSSS were found to be ∼94.0 ± 1.8 and ∼96.5 ± 1.3%, respectively. Ceramics prepared by both methods showed antiferroelectric behavior, and reaction-sintered AgNbO3 ceramics exhibited lower energy loss density than CSSS samples. In addition, a recoverable energy storage density (Wrec) of 3.1 J cm-3 and higher energy storage efficiency (η) for RS samples were measured at 175 kV cm-1. Moreover, the η values of 74.2% and 57.7% were measured for samples sintered by RS and CSSS, respectively. This energy storage efficiency is the highest ever reported for pure AgNbO3 ceramics. Furthermore, reaction-sintered samples showed good temperature stability for Wrec and η in the 30-80 °C temperature range.

3.
Micromachines (Basel) ; 14(9)2023 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-37763922

RESUMEN

We report here the successful shape-controlled synthesis of dielectric spinel-type ZnCr2O4 nanoparticles by using a simple sol-gel auto-combustion method followed by successive heat treatment steps of the resulting powders at temperatures from 500 to 900 °C and from 5 to 11 h, in air. A systematic study of the dependence of the morphology of the nanoparticles on the annealing time and temperature was performed by using field effect scanning electron microscopy (FE-SEM), powder X-ray diffraction (PXRD) and structure refinement by the Rietveld method, dynamic lattice analysis and broadband dielectric spectrometry, respectively. It was observed for the first time that when the aerobic post-synthesis heat treatment temperature increases progressively from 500 to 900 °C, the ZnCr2O4 nanoparticles: (i) increase in size from 10 to 350 nm and (ii) develop well-defined facets, changing their shape from shapeless to truncated octahedrons and eventually pseudo-octahedra. The samples were found to exhibit high dielectric constant values and low dielectric losses with the best dielectric performance characteristics displayed by the 350 nm pseudo-octahedral nanoparticles whose permittivity reaches a value of ε = 1500 and a dielectric loss tan δ = 5 × 10-4 at a frequency of 1 Hz. Nanoparticulate ZnCr2O4-based thin films with a thickness varying from 0.5 to 2 µm were fabricated by the drop-casting method and subsequently incorporated into planar capacitors whose dielectric performance was characterized. This study undoubtedly shows that the dielectric properties of nanostructured zinc chromite powders can be engineered by the rational control of their morphology upon the variation of the post-synthesis heat treatment process.

4.
Materials (Basel) ; 16(3)2023 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-36770296

RESUMEN

BaTiO3 (BTO) nanoparticles produced by wet chemistry methods were embedded in several types of flexible materials in order to fabricate flexible electronic devices. Starting from the produced nanoparticle dielectric properties, flexible material dielectric properties were tested for high electromagnetic frequencies (30 GHz-2 THz) using time domain spectroscopy. Dielectric performances of the different materials obtained with variable nanoparticle concentrations up to 40 wt.%, embedded in, gelatin, epoxy, and styrene-butadiene were compared at several working temperatures between 0 °C and 120 °C. Beside the general trend of ε' decrease with temperature and loses increase with the operating frequency, we were able to identify few matrix dependent optimal nanoparticle concentrations. The best composite performances were achieved by the BTO-SBS matrix, with filler concentration of 2 wt.%, where the losses have been of 1.5%, followed by BTO-gelatin matrix, with filler concentration of 40 wt.%, with higher losses percent of almost 10% for THz frequencies.

5.
Acta Crystallogr E Crystallogr Commun ; 78(Pt 2): 216-219, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-35145754

RESUMEN

In the title polymeric coordination compound, {[FePt(CN)4(H2O)2]·1.33CH3OH} n , the FeII cation (site symmetry 4/mm.m) is coordinated by the N atoms of four cyanide anions (CN-) and the O atoms of two water mol-ecules, forming a nearly regular [FeN4O2] octa-hedron. According the Fe-N and Fe-O bond lengths, the FeII atom is in the high-spin state. The cyanide anions act in a bridging manner to connect the FeII and PtII atoms. The [Pt(CN)4]2- moieties (Pt with site symmetry 4/mm.m) have a perfect square-planar shape. The latter anion is located perpendicular to the FeN4 plane, thus ensuring the creation of a three-dimensional framework. The crystal structure features methanol solvent mol-ecules of which 4/3 were located per FeII cation. These solvent mol-ecules are located in hexa-gonal pores; they inter-act with coordinating water mol-ecules through weak hydrogen bonds. Other guest mol-ecules could not be modelled in a satisfactory way and their contribution to the scattering was removed by a mask procedure.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA