Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mycologia ; 116(2): 322-349, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38363178

RESUMEN

Xerampelinae is a subsection composed of species of ectomycorrhizal fungi belonging to the hyperdiverse and cosmopolitan genus Russula (Russulales). Species of Xerampelinae are recognized by their fishy or shrimp odor, browning context, and a green reaction to iron sulfate. However, species delimitation has traditionally relied on morphology and analysis of limited molecular data. Prior taxonomic work in Xerampelinae has led to the description of as many as 59 taxa in Europe and 19 in North America. Here we provide the first multilocus phylogeny of European and North American members based on two nrDNA loci and two protein-coding genes. The resulting phylogeny supports the recognition of 17 species-rank Xerampelinae clades; however, higher species richness (~23) is suggested by a more inclusive nuclear rDNA internal transcribed spacer region ITS1-5.8S-ITS2 (ITS barcode) analysis. Phylogenetic and morphological analyses support three new species with restricted geographic distributions: R. lapponica, R. neopascua, and R. olympiana. We confirm that the European species R. subrubens is present in North America and the North American species R. serissima (previously known as R. favrei) is present in Europe. Most other Xerampelinae appear restricted to either North America or Eurasia, which indicates a high degree of regional endemism; this includes R. xerampelina, a name widely applied to North American taxa, but a species restricted to Eurasia.


Asunto(s)
Agaricales , Basidiomycota , Filogenia , Análisis de Secuencia de ADN , Agaricales/genética , Basidiomycota/genética , ADN Ribosómico/genética , ADN Espaciador Ribosómico/genética , ADN de Hongos/genética
2.
J Fungi (Basel) ; 9(8)2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37623559

RESUMEN

The nuclear ribosomal internal transcribed spacer (nrITS) region has been widely used in fungal diversity studies. Environmental metabarcoding has increased the importance of the fungal DNA barcode in documenting fungal diversity and distribution. The DNA barcode gap is seen as the difference between intra- and inter-specific pairwise distances in a DNA barcode. The current understanding of the barcode gap in macrofungi is limited, inhibiting the development of best practices in applying the nrITS region toward research on fungal diversity. This study examined the barcode gap using 5146 sequences representing 717 species of macrofungi from eleven genera, eight orders and two phyla in datasets assembled by taxonomic experts. Intra- and inter-specific pairwise distances were measured from sequence and phylogenetic data. The results demonstrate that barcode gaps are influenced by differences in intra- and inter-specific variance in pairwise distances. In terms of DNA barcode behavior, variance is greater in the ITS1 than ITS2, and variance is greater in both relative to the combined nrITS region. Due to the difference in variance, the barcode gaps in the ITS2 region are greater than in the ITS1. Additionally, the taxonomic approach of "splitting" taxa into numerous taxonomic units produces greater barcode gaps when compared to "lumping". The results show variability in the barcode gaps between fungal taxa, demonstrating a need to understand the accuracy of DNA barcoding in quantifying species richness. For taxonomic studies, variability in nrITS sequence data supports the application of multiple molecular markers to corroborate the taxonomic and systematic delineation of species.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA