Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Cell ; 141(5): 846-58, 2010 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-20510931

RESUMEN

Polarized trafficking of synaptic proteins to axons and dendrites is crucial to neuronal function. Through forward genetic analysis in C. elegans, we identified a cyclin (CYY-1) and a cyclin-dependent Pctaire kinase (PCT-1) necessary for targeting presynaptic components to the axon. Another cyclin-dependent kinase, CDK-5, and its activator p35, act in parallel to and partially redundantly with the CYY-1/PCT-1 pathway. Synaptic vesicles and active zone proteins mostly mislocalize to dendrites in animals defective for both PCT-1 and CDK-5 pathways. Unlike the kinesin-3 motor, unc-104/Kif1a mutant, cyy-1 cdk-5 double mutants have no reduction in anterogradely moving synaptic vesicle precursors (SVPs) as observed by dynamic imaging. Instead, the number of retrogradely moving SVPs is dramatically increased. Furthermore, this mislocalization defect is suppressed by disrupting the retrograde motor, the cytoplasmic dynein complex. Thus, PCT-1 and CDK-5 pathways direct polarized trafficking of presynaptic components by inhibiting dynein-mediated retrograde transport and setting the balance between anterograde and retrograde motors.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Quinasas Ciclina-Dependientes/metabolismo , Sinapsis/metabolismo , Animales , Axones , Caenorhabditis elegans , Ciclinas/metabolismo , Cinesinas/metabolismo , Neuronas , Transducción de Señal
2.
PLoS Genet ; 18(10): e1010454, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36223408

RESUMEN

Axon and dendrite development require the cooperation of actin and microtubule cytoskeletons. Microtubules form a well-organized network to direct polarized trafficking and support neuronal processes formation with distinct actin structures. However, it is largely unknown how cytoskeleton regulators differentially regulate microtubule organization in axon and dendrite development. Here, we characterize the role of actin regulators in axon and dendrite development and show that the RacGEF TIAM-1 regulates dendritic patterns through its N-terminal domains and suppresses axon growth through its C-terminal domains. TIAM-1 maintains plus-end-out microtubule orientation in posterior dendrites and prevents the accumulation of microtubules in the axon. In somatodendritic regions, TIAM-1 interacts with UNC-119 and stabilizes the organization between actin filaments and microtubules. UNC-119 is required for TIAM-1 to control axon growth, and its expression levels determine axon length. Taken together, TIAM-1 regulates neuronal microtubule organization and patterns axon and dendrite development respectively through its different domains.


Asunto(s)
Actinas , Dendritas , Dendritas/genética , Dendritas/metabolismo , Actinas/metabolismo , Axones/metabolismo , Microtúbulos/metabolismo , Neurogénesis/genética
3.
PLoS Genet ; 17(2): e1009360, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33571181

RESUMEN

Neurons are highly specialized cells with polarized cellular processes and subcellular domains. As vital organelles for neuronal functions, mitochondria are distributed by microtubule-based transport systems. Although the essential components of mitochondrial transport including motors and cargo adaptors are identified, it is less clear how mitochondrial distribution among somato-dendritic and axonal compartment is regulated. Here, we systematically study mitochondrial motors, including four kinesins, KIF5, KIF17, KIF1, KLP-6, and dynein, and transport regulators in C. elegans PVD neurons. Among all these motors, we found that mitochondrial export from soma to neurites is mainly mediated by KIF5/UNC-116. Interestingly, UNC-116 is especially important for axonal mitochondria, while dynein removes mitochondria from all plus-end dendrites and the axon. We surprisingly found one mitochondrial transport regulator for minus-end dendritic compartment, TRAK-1, and two mitochondrial transport regulators for axonal compartment, CRMP/UNC-33 and JIP3/UNC-16. While JIP3/UNC-16 suppresses axonal mitochondria, CRMP/UNC-33 is critical for axonal mitochondria; nearly no axonal mitochondria present in unc-33 mutants. We showed that UNC-33 is essential for organizing the population of UNC-116-associated microtubule bundles, which are tracks for mitochondrial trafficking. Disarrangement of these tracks impedes mitochondrial transport to the axon. In summary, we identified a compartment-specific transport regulation of mitochondria by UNC-33 through organizing microtubule tracks for different kinesin motors other than microtubule polarity.


Asunto(s)
Axones/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Ciclo Celular/metabolismo , Cinesinas/metabolismo , Microtúbulos/metabolismo , Mitocondrias/metabolismo , Factores de Crecimiento Nervioso/metabolismo , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Ciclo Celular/genética , Dendritas/metabolismo , Dineínas/metabolismo , Cinesinas/genética , Microscopía Confocal , Microscopía Fluorescente , Mutación , Factores de Crecimiento Nervioso/genética , Neuronas/metabolismo , Transporte de Proteínas
4.
Nat Methods ; 9(10): 977-80, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22902935

RESUMEN

Morphometric studies in multicellular organisms are generally performed manually because of the complexity of multidimensional features and lack of appropriate tools for handling these organisms. Here we present an integrated system that identifies and sorts Caenorhabditis elegans mutants with altered subcellular traits in real time without human intervention. We performed self-directed screens 100 times faster than manual screens and identified both genes and phenotypic classes involved in synapse formation.


Asunto(s)
Caenorhabditis elegans/genética , Neurogénesis , Sinapsis/fisiología , Animales , Expresión Génica , Mutación
5.
Dev Cell ; 10(6): 719-29, 2006 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16740475

RESUMEN

The Ci/Gli family of transcription factors mediates Hedgehog (Hh) signaling in many key developmental processes. Here we identify a Hh-induced MATH and BTB domain containing protein (HIB) as a negative regulator of the Hh pathway. Overexpressing HIB down regulates Ci and blocks Hh signaling, whereas inactivating HIB results in Ci accumulation and enhanced pathway activity. HIB binds the N- and C-terminal regions of Ci, both of which mediate Ci degradation. HIB forms a complex with Cul3, a scaffold for modular ubiquitin ligases, and promotes Ci ubiquitination and degradation through Cul3. Furthermore, HIB-mediated Ci degradation is stimulated by Hh and inhibited by Suppressor of Fused (Sufu). The mammalian homolog of HIB, SPOP, can functionally substitute for HIB, and Gli proteins are degraded by HIB/SPOP in Drosophila. We provide evidence that HIB prevents aberrant Hh signaling posterior to the morphogenic furrow, which is essential for normal eye development.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas de Insectos/metabolismo , Proteínas Oncogénicas/metabolismo , Transducción de Señal , Transactivadores/metabolismo , Factores de Transcripción/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión , Proteínas de Ciclo Celular/metabolismo , Proteínas Cullin/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/fisiología , Drosophila/citología , Drosophila/embriología , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Proteínas de Drosophila/fisiología , Embrión no Mamífero , Eliminación de Gen , Dosificación de Gen , Genes de Insecto , Glutatión Transferasa/metabolismo , Proteínas Hedgehog , Proteínas de Insectos/genética , Péptidos y Proteínas de Señalización Intracelular/química , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Modelos Biológicos , Proteínas Oncogénicas/química , Proteínas Oncogénicas/genética , Proteínas Oncogénicas/fisiología , Complejo de la Endopetidasa Proteasomal/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Proteínas Recombinantes de Fusión/metabolismo , Factores de Transcripción/química , Factores de Transcripción/genética , Factores de Transcripción/fisiología , Transgenes , Proteína con Dedos de Zinc GLI1
7.
Dev Neurobiol ; 71(6): 554-66, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21557505

RESUMEN

Neuronal polarity sets the foundation for information processing and signal transmission within neural networks. However, fundamental question of how a neuron develops and maintains structurally and functionally distinct processes, axons and dendrites, is still an unclear. The simplicity and availability of practical genetic tools makes C. elegans as an ideal model to study neuronal polarity in vivo. In recent years, new studies have identified critical polarity molecules that function at different stages of neuronal polarization in C. elegans. This review focuses on how neurons guided by extrinsic cues, break symmetry, and subsequently recruit intracellular molecules to establish and maintain axon-dendrite polarity in vivo.


Asunto(s)
Caenorhabditis elegans/fisiología , Polaridad Celular/fisiología , Neuronas/fisiología , Animales , Caenorhabditis elegans/ultraestructura , Neuronas/ultraestructura
8.
Neuron ; 70(4): 742-57, 2011 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-21609829

RESUMEN

The assembly and maturation of neural circuits require a delicate balance between synapse formation and elimination. The cellular and molecular mechanisms that coordinate synaptogenesis and synapse elimination are poorly understood. In C. elegans, DD motoneurons respecify their synaptic connectivity during development by completely eliminating existing synapses and forming new synapses without changing cell morphology. Using loss- and gain-of-function genetic approaches, we demonstrate that CYY-1, a cyclin box-containing protein, drives synapse removal in this process. In addition, cyclin-dependent kinase-5 (CDK-5) facilitates new synapse formation by regulating the transport of synaptic vesicles to the sites of synaptogenesis. Furthermore, we show that coordinated activation of UNC-104/Kinesin3 and Dynein is required for patterning newly formed synapses. During the remodeling process, presynaptic components from eliminated synapses are recycled to new synapses, suggesting that signaling mechanisms and molecular motors link the deconstruction of existing synapses and the assembly of new synapses during structural synaptic plasticity.


Asunto(s)
Proteínas de Caenorhabditis elegans/fisiología , Quinasa 5 Dependiente de la Ciclina/fisiología , Ciclinas/fisiología , Red Nerviosa/fisiología , Plasticidad Neuronal/fisiología , Sinapsis/fisiología , Animales , Caenorhabditis elegans
9.
Neuron ; 72(2): 285-99, 2011 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-22017988

RESUMEN

VIDEO ABSTRACT: During development, dendrites arborize in a field several hundred folds of their soma size, a process regulated by intrinsic transcription program and cell adhesion molecule (CAM)-mediated interaction. However, underlying cellular machineries that govern distal higher-order dendrite extension remain largely unknown. Here, we show that Nak, a clathrin adaptor-associated kinase, promotes higher-order dendrite growth through endocytosis. In nak mutants, both the number and length of higher-order dendrites are reduced, which are phenocopied by disruptions of clathrin-mediated endocytosis. Nak interacts genetically with components of the endocytic pathway, colocalizes with clathrin puncta, and is required for dendritic localization of clathrin puncta. More importantly, these Nak-containing clathrin structures preferentially localize to branching points and dendritic tips that are undergoing active growth. We present evidence that the Drosophila L1-CAM homolog Neuroglian is a relevant cargo of Nak-dependent internalization, suggesting that localized clathrin-mediated endocytosis of CAMs facilitates the extension of nearby higher-order dendrites.


Asunto(s)
Clatrina/metabolismo , Dendritas/metabolismo , Proteínas de Drosophila/metabolismo , Endocitosis/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Animales Modificados Genéticamente , Moléculas de Adhesión Celular Neuronal/genética , Moléculas de Adhesión Celular Neuronal/metabolismo , Drosophila , Proteínas de Drosophila/genética , Proteínas Serina-Treonina Quinasas/genética
10.
Curr Opin Neurobiol ; 20(4): 489-93, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20471244

RESUMEN

Precise formation of presynaptic structures at specific loci is critical for correctly wiring neuronal circuits. Recent findings have gradually revealed how essential cues from different sources inform the axon to define the presynaptic domain and to choose its postsynaptic target. Here, we review key molecular regulators which mediate instructive or repellent signals from multiple sources including the target cells, local guidepost cells, and distal guiding tissues.


Asunto(s)
Neuronas/citología , Terminales Presinápticos/fisiología , Transducción de Señal/fisiología , Sinapsis/fisiología , Animales , Humanos , Modelos Biológicos , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neuronas/fisiología
11.
Dev Biol ; 308(1): 106-19, 2007 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-17559828

RESUMEN

Cullin-RING ubiquitin ligases ubiquitinate protein substrates and control their levels through degradation. Here we show that cullin3 (Cul3) suppresses Hedgehog (Hh) signaling through downregulating the level of the signaling pathway effector cubitus interruptus (Ci). High-level Hh signaling promotes Cul3-dependent Ci degradation, leading to the downregulation of Hh signaling. This process is manifested in controlling cell proliferation during Drosophila retinal development. In Cul3 mutants, the population of interommatidial cells is increased, which can be mimicked by overexpression of Ci and suppressed by depleting endogenous Ci. Hh also regulates the population of interommatidial cells in the pupal stage. Alterations in the interommatidial cell population correlate with alterations in precursor proliferation in the second mitotic wave of larval eye discs. Taken together, these results suggest that Cul3 downregulates Ci levels to modulate Hh signaling activity, thus ensuring proper cell proliferation during retinal development.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas Cullin/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas Hedgehog/metabolismo , Retina/citología , Retina/metabolismo , Animales , Animales Modificados Genéticamente , Proteínas de Ciclo Celular/genética , Proliferación Celular , Proteínas Cullin/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Drosophila/citología , Drosophila/genética , Drosophila/crecimiento & desarrollo , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas Hedgehog/genética , Modelos Biológicos , Retina/crecimiento & desarrollo , Transducción de Señal , Células Madre/citología , Células Madre/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
12.
Genes Dev ; 16(18): 2403-14, 2002 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-12231629

RESUMEN

The ubiquitin-like protein, Nedd8, covalently modifies members of the Cullin family. Cullins are the major components of a series of ubiquitin ligases that control the degradation of a broad range of proteins. We found that Nedd8 modifies Cul1 in Drosophila. In Drosophila Nedd8 and Cul1 mutants, protein levels of the signal transduction effectors, Cubitus interruptus (Ci) and Armadillo (Arm), and the cell cycle regulator, Cyclin E (CycE), are highly accumulated, suggesting that the Cul1-based SCF complex requires Nedd8 modification for the degradation processes of Ci, Arm, and CycE in vivo. We further show that two distinct degradation mechanisms modulating Ci stability in the developing eye disc are separated by the morphogenetic furrow (MF) in which retinal differentiation is initiated. In cells anterior to the MF, Ci proteolytic processing promoted by PKA requires the activity of the Nedd8-modified Cul1-based SCF(Slimb) complex. In posterior cells, Ci degradation is controlled by a mechanism that requires the activity of Cul3, another member of the Cullin family. This posterior Ci degradation mechanism, which partially requires Nedd8 modification, is activated by Hedgehog (Hh) signaling and is PKA-independent.


Asunto(s)
Proteínas de Unión al Calcio , Proteínas de Ciclo Celular/metabolismo , Proteínas Cullin , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/crecimiento & desarrollo , Drosophila/metabolismo , Proteínas Nucleares , Receptores Acoplados a Proteínas G , Transactivadores , Secuencia de Aminoácidos , Animales , Proteínas del Dominio Armadillo , Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Ciclina E/metabolismo , Proteínas de Unión al ADN/genética , Drosophila/genética , Proteínas de Drosophila/genética , Ojo/crecimiento & desarrollo , Ojo/metabolismo , Genes de Insecto , Proteínas Hedgehog , Proteínas de Insectos/metabolismo , Modelos Biológicos , Datos de Secuencia Molecular , Mutación , Proteína NEDD8 , Procesamiento Proteico-Postraduccional , Receptores de Superficie Celular/metabolismo , Homología de Secuencia de Aminoácido , Transducción de Señal , Receptor Smoothened , Factores de Transcripción , Ubiquitinas/genética , Ubiquitinas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA