Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Glob Chang Biol ; 30(8): e17447, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39098999

RESUMEN

The current climate warming is a challenge to biodiversity that could surpass the adaptation capacity of some species. Hence, understanding the means by which populations undergo an increase in their thermal tolerance is critical to assess how they could adapt to climate warming. Specifically, sea turtle populations could respond to increasing temperatures by (1) colonizing new nesting areas, (2) nesting during cooler times of the year, and/or (3) by increasing their thermal tolerance. Differences in thermal tolerance of clutches laid by different females would indicate that populations have the potential to adapt by natural selection. Here, we used exhaustive information on nest temperatures and hatching success of leatherback turtle (Dermochelys coriacea) clutches over 14 years to assess the occurrence of individual variability in thermal tolerance among females. We found an effect of temperature, year, and the interaction between female identity and nest temperature on hatching success, indicating that clutches laid by different females exhibited different levels of vulnerability to high temperatures. If thermal tolerance is a heritable trait, individuals with higher thermal tolerances could have greater chances of passing their genes to following generations, increasing their frequency in the population. However, the high rate of failure of clutches at temperatures above 32°C suggests that leatherback turtles are already experiencing extreme heat stress. A proper understanding of mechanisms of adaptation in populations to counteract changes in climate could greatly contribute to future conservation of endangered populations in a rapidly changing world.


Asunto(s)
Cambio Climático , Comportamiento de Nidificación , Tortugas , Animales , Tortugas/fisiología , Femenino , Adaptación Fisiológica , Temperatura , Termotolerancia
2.
J Therm Biol ; 110: 103342, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36462853

RESUMEN

Sea turtles generally lay several clutches of eggs in a single nesting season. While a negative correlation between water temperatures and the time required between constitutive nesting events (termed the internesting interval) has been previously reported in loggerhead Caretta caretta and green turtles Chelonia mydas, it is not understood whether this relationship remains constant across other sea turtle species. Here, we expanded upon these previous studies on loggerhead and green turtles by using larger sample sizes and including data from species with a wider range of body-sizes; specifically: hawksbill Eretmochelys imbricata, leatherback Dermochelys coriacea, and olive ridley turtles Lepidochelys olivacea. In total, we compiled temperature data from biologgers deployed over internesting intervals on 23 loggerhead, 22 green, 7 hawksbill, 26 leatherback and 11 olive ridley turtles from nesting sites in 8 different countries. The relationship between the duration of the internesting interval and water temperatures in green and loggerhead turtles were statistically similar yet it differed between all other turtle species. Specifically, hawksbill turtles had much longer internesting intervals than green or loggerhead turtles even after controlling for temperature. In addition, both olive ridley and leatherback turtles exhibited thermal independence of internesting intervals presumably due to the large body-size of leatherback turtles and the unique capacity of ridley turtles to delay oviposition. The observed interspecific differences in the relationship between the length of the internesting interval and water temperatures indicate the complex and variable responses that each sea turtle species may exhibit due to environmental fluctuations and climate change.


Asunto(s)
Tortugas , Femenino , Animales , Temperatura , Agua , Cambio Climático , Tamaño Corporal
3.
Glob Chang Biol ; 21(8): 2980-8, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25929883

RESUMEN

Temperature-dependent sex determination (TSD) is the predominant form of environmental sex determination (ESD) in reptiles, but the adaptive significance of TSD in this group remains unclear. Additionally, the viability of species with TSD may be compromised as climate gets warmer. We simulated population responses in a turtle with TSD to increasing nest temperatures and compared the results to those of a virtual population with genotypic sex determination (GSD) and fixed sex ratios. Then, we assessed the effectiveness of TSD as a mechanism to maintain populations under climate change scenarios. TSD populations were more resilient to increased nest temperatures and mitigated the negative effects of high temperatures by increasing production of female offspring and therefore, future fecundity. That buffered the negative effect of temperature on the population growth. TSD provides an evolutionary advantage to sea turtles. However, this mechanism was only effective over a range of temperatures and will become inefficient as temperatures rise to levels projected by current climate change models. Projected global warming threatens survival of sea turtles, and the IPCC high gas concentration scenario may result in extirpation of the studied population in 50 years.


Asunto(s)
Cambio Climático , Modelos Teóricos , Razón de Masculinidad , Tortugas/fisiología , Aclimatación , Animales , Femenino , Masculino , Temperatura
4.
Proc Biol Sci ; 281(1777): 20132559, 2014 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-24403331

RESUMEN

Fisheries bycatch is a critical source of mortality for rapidly declining populations of leatherback turtles, Dermochelys coriacea. We integrated use-intensity distributions for 135 satellite-tracked adult turtles with longline fishing effort to estimate predicted bycatch risk over space and time in the Pacific Ocean. Areas of predicted bycatch risk did not overlap for eastern and western Pacific nesting populations, warranting their consideration as distinct management units with respect to fisheries bycatch. For western Pacific nesting populations, we identified several areas of high risk in the north and central Pacific, but greatest risk was adjacent to primary nesting beaches in tropical seas of Indo-Pacific islands, largely confined to several exclusive economic zones under the jurisdiction of national authorities. For eastern Pacific nesting populations, we identified moderate risk associated with migrations to nesting beaches, but the greatest risk was in the South Pacific Gyre, a broad pelagic zone outside national waters where management is currently lacking and may prove difficult to implement. Efforts should focus on these predicted hotspots to develop more targeted management approaches to alleviate leatherback bycatch.


Asunto(s)
Migración Animal , Conservación de los Recursos Naturales/métodos , Explotaciones Pesqueras , Tortugas/fisiología , Animales , Océano Pacífico , Tecnología de Sensores Remotos
5.
Ecol Appl ; 22(3): 735-47, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22645807

RESUMEN

Interactions with fisheries are believed to be a major cause of mortality for adult leatherback turtles (Dermochelys coriacea), which is of particular concern in the Pacific Ocean, where they have been rapidly declining. In order to identify where these interactions are occurring and how they may be reduced, it is essential first to understand the movements and behavior of leatherback turtles. There are two regional nesting populations in the East Pacific (EP) and West Pacific (WP), comprising multiple nesting sites. We synthesized tracking data from the two populations and compared their movement patterns. A switching state-space model was applied to 135 Argos satellite tracks to account for observation error, and to distinguish between migratory and area-restricted search behaviors. The tracking data, from the largest leatherback data set ever assembled, indicated that there was a high degree of spatial segregation between EP and WP leatherbacks. Area-restricted search behavior mainly occurred in the southeast Pacific for the EP leatherbacks, whereas the WP leatherbacks had several different search areas in the California Current, central North Pacific, South China Sea, off eastern Indonesia, and off southeastern Australia. We also extracted remotely sensed oceanographic data and applied a generalized linear mixed model to determine if leatherbacks exhibited different behavior in relation to environmental variables. For the WP population, the probability of area-restricted search behavior was positively correlated with chlorophyll-a concentration. This response was less strong in the EP population, but these turtles had a higher probability of search behavior where there was greater Ekman upwelling, which may increase the transport of nutrients and consequently prey availability. These divergent responses to oceanographic conditions have implications for leatherback vulnerability to fisheries interactions and to the effects of climate change. The occurrence of leatherback turtles within both coastal and pelagic areas means they have a high risk of exposure to many different fisheries, which may be very distant from their nesting sites. The EP leatherbacks have more limited foraging grounds than the WP leatherbacks, which could make them more susceptible to any temperature or prey changes that occur in response to climate change.


Asunto(s)
Migración Animal/fisiología , Ecosistema , Monitoreo del Ambiente/métodos , Tortugas , Sistemas de Identificación Animal , Animales , Conservación de los Recursos Naturales , Conducta Alimentaria , Modelos Biológicos , Comportamiento de Nidificación , Océano Pacífico , Densidad de Población , Estaciones del Año , Factores de Tiempo
6.
PLoS Biol ; 6(7): e171, 2008 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-18630987

RESUMEN

Effective transboundary conservation of highly migratory marine animals requires international management cooperation as well as clear scientific information about habitat use by these species. Populations of leatherback turtles (Dermochelys coriacea) in the eastern Pacific have declined by >90% during the past two decades, primarily due to unsustainable egg harvest and fisheries bycatch mortality. While research and conservation efforts on nesting beaches are ongoing, relatively little is known about this population of leatherbacks' oceanic habitat use and migration pathways. We present the largest multi-year (2004-2005, 2005-2006, and 2007) satellite tracking dataset (12,095 cumulative satellite tracking days) collected for leatherback turtles. Forty-six females were electronically tagged during three field seasons at Playa Grande, Costa Rica, the largest extant nesting colony in the eastern Pacific. After completing nesting, the turtles headed southward, traversing the dynamic equatorial currents with rapid, directed movements. In contrast to the highly varied dispersal patterns seen in many other sea turtle populations, leatherbacks from Playa Grande traveled within a persistent migration corridor from Costa Rica, past the equator, and into the South Pacific Gyre, a vast, low-energy, low-productivity region. We describe the predictable effects of ocean currents on a leatherback migration corridor and characterize long-distance movements by the turtles in the eastern South Pacific. These data from high seas habitats will also elucidate potential areas for mitigating fisheries bycatch interactions. These findings directly inform existing multinational conservation frameworks and provide immediate regions in the migration corridor where conservation can be implemented. We identify high seas locations for focusing future conservation efforts within the leatherback dispersal zone in the South Pacific Gyre.


Asunto(s)
Migración Animal , Conservación de los Recursos Naturales/métodos , Ecología , Tortugas/fisiología , Animales , Conservación de los Recursos Naturales/economía , Costa Rica , Conducta Alimentaria , Femenino , Comportamiento de Nidificación , Movimientos del Agua
7.
PLoS One ; 16(7): e0253916, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34280208

RESUMEN

In this study, we applied multiple reaction monitoring (MRM)-profiling to explore the relative ion intensity of lipid classes in plasma samples from sea turtles in order to profile lipids relevant to sea turtle physiology and investigate how dynamic ocean environments affect these profiles. We collected plasma samples from foraging green (Chelonia mydas, n = 28) and hawksbill (Eretmochelys imbricata, n = 16) turtles live captured in North Pacific Costa Rica in 2017. From these samples, we identified 623 MRMs belonging to 10 lipid classes (sphingomyelin, phosphatidylcholine, free fatty acid, cholesteryl ester, phosphatidylserine, phosphatidylinositol, phosphatidylglycerol, phosphatidylethanolamine, ceramide, and triacylglyceride) and one metabolite group (acyl-carnitine) present in sea turtle plasma. The relative ion intensities of most lipids (80%) were consistent between species, across seasons, and were not correlated to body size or estimated sex. Of the differences we observed, the most pronounced was the differences in relative ion intensity between species. We identified 123 lipids that had species-specific relative ion intensities. While some of this variability is likely due to green and hawksbill turtles consuming different food items, we found indications of a phylogenetic component as well. Of these, we identified 47 lipids that varied by season, most belonging to the structural phospholipid classes. Overall, more lipids (n = 39) had higher relative ion intensity in the upwelling (colder) season compared to the non-upwelling season (n = 8). Further, we found more variability in hawksbill turtles than green turtles. Here, we provide the framework in which to apply future lipid profiling in the assessment of health, physiology, and behavior in endangered sea turtles.


Asunto(s)
Lípidos/sangre , Filogenia , Especificidad de la Especie , Tortugas/genética , Animales , Clima , Costa Rica , Lípidos/clasificación , Lípidos/genética , Estaciones del Año , Tortugas/fisiología
8.
Sci Rep ; 11(1): 22391, 2021 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-34789821

RESUMEN

Knowledge of energy expenditure informs conservation managers for long term plans for endangered species health and habitat suitability. We measured field metabolic rate (FMR) of free-roaming giant pandas in large enclosures in a nature reserve using the doubly labeled water method. Giant pandas in zoo like enclosures had a similar FMR (14,182 kJ/day) to giant pandas in larger field enclosures (13,280 kJ/day). In winter, giant pandas raised their metabolic rates when living at - 2.4 °C (36,108 kJ/day) indicating that they were below their thermal neutral zone. The lower critical temperature for thermoregulation was about 8.0 °C and the upper critical temperature was about 28 °C. Giant panda FMRs were somewhat lower than active metabolic rates of sloth bears, lower than FMRs of grizzly bears and polar bears and 69 and 81% of predicted values based on a regression of FMR versus body mass of mammals. That is probably due to their lower levels of activity since other bears actively forage for food over a larger home range and pandas often sit in a patch of bamboo and eat bamboo for hours at a time. The low metabolic rates of giant pandas in summer, their inability to acquire fat stores to hibernate in winter, and their ability to raise their metabolic rate to thermoregulate in winter are energetic adaptations related to eating a diet composed almost exclusively of bamboo. Differences in FMR of giant pandas between our study and previous studies (one similar and one lower) appear to be due to differences in activity of the giant pandas in those studies.


Asunto(s)
Adaptación Fisiológica , Metabolismo Energético , Ursidae/fisiología , Factores de Edad , Animales , Estaciones del Año
9.
Ecol Evol ; 10(16): 8688-8704, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32884651

RESUMEN

Endangered species are grouped into genetically discrete populations to direct conservation efforts. Mitochondrial control region (mtCR) haplotypes are used to elucidate deep divergences between populations, as compared to nuclear microsatellites that can detect recent structuring. When prior populations are unknown, it is useful to subject microsatellite data to clustering and/or ordination population inference. Olive ridley sea turtles (Lepidochelys olivacea) are the most abundant sea turtle, yet few studies have characterized olive ridley population structure. Recently, clustering results of olive ridleys in the Eastern Tropical Pacific Ocean suggested weak structuring (F ST = 0.02) between Mexico and Central America. We analyzed mtCR haplotypes, new microsatellite genotypes from Costa Rica, and preexisting microsatellite genotypes from olive ridleys across the Eastern Tropical Pacific, to further explore population structuring in this region. We subjected inferred populations to multiple analyses to explore the mechanisms behind their structuring. We found 10 mtCR haplotypes from 60 turtles nesting at three sites in Costa Rica, but did not detect divergence between Costa Rican sites, or between Central America and Mexico. In Costa Rica, clustering suggested one population with no structuring, but ordination suggested four cryptic clusters with moderate structuring (F ST = 0.08, p < .001). Across the Eastern Tropical Pacific, ordination suggested nine cryptic clusters with moderate structuring (F ST = 0.103, p < .001) that largely corresponded to Mexican and Central American populations. All ordination clusters displayed significant internal relatedness relative to global relatedness (p < .001) and contained numerous sibling pairs. This suggests that broadly dispersed family lineages have proliferated in Eastern Tropical Pacific olive ridleys and corroborates previous work showing basin-wide connectivity and shallow population structure in this region. The existence of broadly dispersed kin in Eastern Tropical Pacific olive ridleys has implications for management of olive ridleys in this region, and adds to our understanding of sea turtle ecology and life history, particularly in light of the natal-homing paradigm.

10.
PLoS One ; 15(7): e0222251, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32726310

RESUMEN

Sea level is expected to rise 44 to 74 cm by the year 2100, which may have critical, previously un-investigated implications for sea turtle nesting habitat on Bioko Island, Equatorial Guinea. This study investigates how nesting habitat will likely be lost and altered with various increases in sea level, using global sea level rise (SLR) predictions from the Intergovernmental Panel on Climate Change. Beach profiling datasets from Bioko's five southern nesting beaches were used in GIS to create models to estimate habitat loss with predicted increases in sea level by years 2046-2065 and 2081-2100. The models indicate that an average of 62% of Bioko's current nesting habitat could be lost by 2046-2065 and 87% by the years 2081-2100. Our results show that different study beaches showed different levels of vulnerability to increases in SLR. In addition, on two beaches erosion and tall vegetation berms have been documented, causing green turtles to nest uncharacteristically in front of the vegetation line. We also report that development plans are currently underway on the beach least susceptible to future increases in sea level, highlighting how anthropogenic encroachment combined with SLR can be particularly detrimental to nesting turtle populations. Identified habitat sensitivities to SLR will be used to inform the government of Equatorial Guinea to consider the vulnerability of their resident turtle populations and projected climate change implications when planning for future development. To our knowledge this is the first study to predict the impacts of SLR on a sea turtle nesting habitat in Africa.


Asunto(s)
Comportamiento de Nidificación/fisiología , Elevación del Nivel del Mar , Tortugas/fisiología , Animales , Ecosistema , Guinea Ecuatorial , Islas , Análisis Espacial
11.
PLoS One ; 14(6): e0217310, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31166979

RESUMEN

Mangrove forests, one of the world's most endangered ecosystems, are also some of the most difficult to access. This is especially true along the Pacific coast of Costa Rica, where 99% of the country's mangroves occur. Unmanned Aerial Systems (UAS), or drones, have become a convenient tool for natural area assessment, and offer a solution to the problems of remote mangrove monitoring. This study is the first to use UAS to analyze the structure of a mangrove forests within Central America. Our goals were to (1) determine the forest structure of two estuaries in northwestern Costa Rica through traditional ground measurements, (2) assess the accuracy of UAS measurements of canopy height and percent coverage and (3) determine whether the normalized difference vegetation index (NDVI) could discriminate between the most abundant mangrove species. We flew a UAS equipped with a single NDVI sensor during the peak wet (Sept-Nov) and dry (Jan-Feb) seasons. The structure and species composition of the estuaries showed a possible transition between the wet mangroves of southern Costa Rica and the drier northern mangroves. UAS-derived measurements at 100 cm/pixel resolution of percent canopy coverage and maximum and mean canopy height were not statistically different from ground measurements (p > 0.05). However, there were differences in mean canopy height at 10 cm/pixel resolution (p = 0.043), indicating diminished returns in accuracy as resolution becomes extremely fine. Mean NDVI values of Avicennia germinans (most abundant species) changed significantly between seasons (p < 0.001). Mean NDVI of Rhizophora racemosa (second most abundant species) was significantly different from A. germinans and dry forest dominant plots during the dry season (p < 0.001), demonstrating NDVI's capability of discriminating mangrove species. This study provides the first structural assessment of the studied estuaries and a framework for future studies of mangroves using UAS.


Asunto(s)
Aviación , Avicennia/crecimiento & desarrollo , Monitoreo del Ambiente , Estuarios , Rhizophoraceae/crecimiento & desarrollo , Humedales , Costa Rica , Océano Pacífico
12.
PLoS One ; 14(6): e0213231, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31226114

RESUMEN

This study uses satellite telemetry to track post-nesting movements of endangered green turtles (Chelonia mydas) (n = 6) in the Gulf of Guinea. It identifies a migratory corridor linking breeding grounds of Atlantic green turtles nesting on Bioko Island, Equatorial Guinea, to foraging grounds in the coastal waters of Accra, Ghana. Track lengths of 20-198 days were analyzed, for a total of 536 movement days for the six turtles. Migratory pathways and foraging grounds were identified by applying a switching state space model to locational data, which provides daily position estimates to identify shifts between migrating and foraging behavior. Turtles exhibited a combination of coastal and oceanic migrations pathways that ranged from 957 km to 1,131 km. Of the six turtles, five completed their migration and maintained residency at the same foraging ground near the coastal waters of Accra, Ghana until transmission was lost. These five resident turtles inhabit heavily fished waters and are vulnerable to a variety of anthropogenic threats. The identification of these foraging grounds highlights the importance of these coastal waters for the protection of the endangered Atlantic green turtle.


Asunto(s)
Migración Animal/fisiología , Conducta Animal/fisiología , Telemetría/métodos , Tortugas/fisiología , Animales , Conducta Apetitiva , Especies en Peligro de Extinción , Guinea Ecuatorial , Ghana , Comportamiento de Nidificación
13.
Conserv Biol ; 22(5): 1216-24, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18637915

RESUMEN

Within 19 years the nesting population of leatherback turtles (Dermochelys coriacea) at Parque Nacional Marino Las Baulas declined from 1500 turtles nesting per year to about 100. We analyzed the effects of fishery bycatch and illegal harvesting (poaching) of eggs on this population. We modeled the population response to different levels of egg harvest (90, 75, 50, and 25%) and the effect of eradicating poaching at different times during the population decline. We compared effects of 90% poaching with those of 20% adult mortality because both of these processes were present in the population at Las Baulas. There was a stepwise decline in number of nesting turtles at all levels of egg harvest. Extirpation times for different levels of poaching ranged from 45 to 282 years. The nesting population declined more slowly and survived longer with 20% adult mortality (146 years) than it did with 90% poaching (45 years). Time that elapsed until poaching stopped determined the average population size at which the population stabilized, ranging from 90 to 420 nesting turtles. Our model predicted that saving clutches lost naturally would restore the population when adult mortality rates were low and would contribute more to population recovery when there were short remigration intervals between nesting seasons and a large proportion of natural loss of clutches. Because the model indicated that poaching was the most important cause of the leatherback decline at Las Baulas, protecting nests on the beach and protecting the beach from development are critical for survival of this population. Nevertheless, the model predicted that current high mortality rates of adults will prevent population recovery. Therefore, protection of the beach habitat and nests must be continued and fishery bycatch must be reduced to save this population.


Asunto(s)
Explotaciones Pesqueras/métodos , Modelos Teóricos , Conducta Predatoria , Tortugas/fisiología , Animales , Simulación por Computador , Costa Rica , Humanos , Mortalidad , Óvulo , Dinámica Poblacional
14.
PLoS One ; 12(3): e0173274, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28306740

RESUMEN

The red panda (Ailurus fulgens) has a similar diet, primarily bamboo, and shares the same habitat as the giant panda, Ailuropoda melanoleuca. There are considerable efforts underway to understand the ecology of the red panda and to increase its populations in natural reserves. Yet it is difficult to design an effective strategy for red panda reintroduction if we do not understand its basic biology. Here we report the resting metabolic rate of the red panda and find that it is higher than previously measured on animals from a zoo. The resting metabolic rate was 0.290 ml/g/h (range 0.204-0.342) in summer and 0.361 ml/g/h in winter (range 0.331-0.406), with a statistically significant difference due to season and test temperature. Temperatures in summer were probably within the thermal neutral zone for metabolism but winter temperatures were below the thermal neutral zone. There was no difference in metabolic rate between male and female red pandas and no difference due to mass. Our values for metabolic rate were much higher than those measured by McNab for 2 red pandas from a zoo. The larger sample size (17), more natural conditions at the Panda Base and improved accuracy of the metabolic instruments provided more accurate metabolism measurements. Contrary to our expectations based on their low quality bamboo diet, the metabolic rates of red pandas were similar to mammals of the same size. Based on their metabolic rates red pandas would not be limited by their food supply in natural reserves.


Asunto(s)
Bambusa , Ursidae/metabolismo , Animales
15.
PLoS One ; 12(5): e0177642, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28493980

RESUMEN

The gut microbiome of herbivorous animals consists of organisms that efficiently digest the structural carbohydrates of ingested plant material. Green turtles (Chelonia mydas) provide an interesting model of change in these microbial communities because they undergo a pronounced shift from a surface-pelagic distribution and omnivorous diet to a neritic distribution and herbivorous diet. As an alternative to direct sampling of the gut, we investigated the cloacal microbiomes of juvenile green turtles before and after recruitment to neritic waters to observe any changes in their microbial community structure. Cloacal swabs were taken from individual turtles for analysis of the 16S rRNA gene sequences using Illumina sequencing. One fecal sample was also obtained, allowing for a preliminary comparison with the bacterial community of the cloaca. We found significant variation in the juvenile green turtle bacterial communities between pelagic and neritic habitats, suggesting that environmental and dietary factors support different bacterial communities in green turtles from these habitats. This is the first study to characterize the cloacal microbiome of green turtles in the context of their ontogenetic shifts, which could provide valuable insight into the origins of their gut bacteria and how the microbial community supports their shift to herbivory.


Asunto(s)
Ecosistema , Microbiota , Tortugas/microbiología , Animales , Biodiversidad , Tamaño Corporal , Cloaca/microbiología , Análisis por Conglomerados , Geografía , Golfo de México , Análisis de Secuencia de ARN
16.
PLoS One ; 12(5): e0177256, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28545092

RESUMEN

Thermal tolerances are affected by the range of temperatures that species encounter in their habitat. Daniel Janzen hypothesized in his "Why mountain passes are higher in the tropics" that temperature gradients were effective barriers to animal movements where climatic uniformity was high. Sea turtles bury their eggs providing some thermal stability that varies with depth. We assessed the relationship between thermal uniformity and thermal tolerance in nests of three species of sea turtles. We considered that barriers were "high" when small thermal changes had comparatively large effects and "low" when the effects were small. Mean temperature was lower and fluctuated less in species that dig deeper nests. Thermal barriers were comparatively "higher" in leatherback turtle (Dermochelys coriacea) nests, which were the deepest, as embryo mortality increased at lower "high" temperatures than in olive ridley (Lepidochelys olivacea) and green turtle (Chelonia mydas) nests. Sea turtles have temperature-dependent sex determination (TSD) and embryo mortality increased as temperature approached the upper end of the transitional range of temperatures (TRT) that produces both sexes (temperature producing 100% female offspring) in leatherback and olive ridley turtles. As thermal barriers are "higher" in some species than in others, the effects of climate warming on embryo mortality is likely to vary among sea turtles. Population resilience to climate warming may also depend on the balance between temperatures that produce female offspring and those that reduce embryo survival.


Asunto(s)
Tortugas/fisiología , Animales , Costa Rica , Femenino , Comportamiento de Nidificación/fisiología , Óvulo/fisiología , Temperatura
17.
Rev. biol. trop ; 70(1)dic. 2022.
Artículo en Inglés | SaludCR, LILACS | ID: biblio-1423033

RESUMEN

Introduction: Tropical dry forests and mangroves, two of the world's most endangered ecosystems, each host a different set of environmental conditions which may support unique assemblages of species. However, few studies have looked at the unique vertebrate biodiversity in regions where both habitats occur side-by-side. Objective: To assess the vertebrate diversity and patterns of habitat usage in a mangrove and tropical dry forest matrix in an unprotected region of Northwestern Costa Rica. Methods: The study was conducted in a 7 km2 matrix of mangrove and tropical dry forests between Cabuyal and Zapotillal bays in Northwestern Costa Rica, south of Santa Rosa National Park. From September 2017 to March 2018, we used 13 automatic camera traps over 1 498 trap days to capture species utilizing the region and assess their patterns of habitat usage both spatially and temporally. Results: Seventy vertebrate species from 42 families in 27 orders were detected, including several globally threatened species. Over half of all species were detected in only one habitat, particularly amongst avian (78 %) and mammalian (42 %) species. Tropical dry forests hosted the greatest number of unique species and supported a greater percentage of herbivores than mangrove or edge habitats, which were dominated by carnivorous and omnivorous species. Mean detections per camera trap of all species increased significantly from the coldest and wettest month (Oct) to the hottest and driest months (Jan & Feb) in tropical dry forests. Sample-based rarefaction analysis revealed that survey length was sufficient to sample the tropical dry forest and edge habitats, though mangroves require further sampling. Conclusions: Taxa found to utilize different forest types may utilize each for different stages of their life cycle, moving between areas as environmental conditions change throughout the year. General patterns of global biodiversity favoring carnivore and omnivore usage of mangrove forests was confirmed in our study.


Introducción: Los bosques secos tropicales y los manglares, dos de los ecosistemas más amenazados del mundo, albergan cada uno un grupo de condiciones ambientales que pueden albergar conjuntos únicos de especies. Sin embargo, pocos estudios han analizado la biodiversidad única de vertebrados en regiones donde ambos hábitats se encuentran uno al lado del otro. Objetivo: Evaluar la diversidad de vertebrados y los patrones de uso del hábitat en una matriz de manglar y bosque seco tropical en una región no protegida del noroeste de Costa Rica. Métodos: El estudio se realizó en una matriz de 7 km2 de manglares y bosques secos tropicales en las bahías de Cabuyal y Zapotillal en el noroeste de Costa Rica, al sur del Parque Nacional Santa Rosa. De septiembre 2017 a marzo 2018, utilizamos 13 cámaras trampa automáticas durante 1 498 días trampa para capturar especies que utilizan la región y evaluar sus patrones de uso espacial y temporal del hábitat. Resultados: Se detectaron 70 especies de vertebrados de 42 familias y 27 órdenes, incluidas varias especies amenazadas a nivel mundial. Más de la mitad de todas las especies se encontraron en un solo hábitat, particularmente aves (78 %) y mamíferos (42 %). Los bosques secos tropicales albergan el mayor número de especies únicas y sustentan un mayor porcentaje de herbívoros que los hábitats de borde de manglares, que estaban dominados u hospedados por especies carnívoras y omnívoras. Las detecciones promedio por cámara trampa de todas las especies aumentaron significativamente desde el mes más frío y húmedo (octubre) hasta los meses más cálidos y secos (enero y febrero) en los bosques secos tropicales. El análisis de rarefacción basado en muestras reveló que la duración del estudio fue suficiente para muestrear los hábitats de bosque seco tropical y de borde, aunque los manglares requieren más muestreo. Conclusiones: Se encontró que los taxones pueden usar varios tipos de bosque en las diferentes etapas de su ciclo de vida, moviéndose entre áreas a medida que las condiciones ambientales cambian a lo largo del año. En nuestro estudio se confirmaron patrones generales de la biodiversidad global que favorecen el uso de los bosques de manglar por parte de carnívoros y omnívoros.


Asunto(s)
Animales , Vertebrados/anatomía & histología , Humedales , Ecosistema Tropical , Costa Rica
18.
Physiol Biochem Zool ; 79(2): 389-99, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16555197

RESUMEN

Studies of metabolism are central to the understanding of the ecology, behavior, and evolution of reptiles. This study focuses on one phase of the sea turtle life cycle, hatchling dispersal, and gives insight into energetic constraints that dispersal imposes on hatchlings. Hatchling dispersal is an energetically expensive phase in the life cycle of the olive ridley turtle Lepidochelys olivacea. Field metabolic rates (FMRs), determined using the doubly labeled water (DLW) method, for L. olivacea hatchlings digging out of their nest chamber, crawling at the sand surface, and swimming were five, four, and seven times, respectively, the resting metabolic rate (RMR). The cost of swimming was 1.5 and 1.8 times the cost of the digging and crawling phases, respectively, and we estimated that if L. olivacea hatchlings swim at frenzy levels, they can rely on yolk reserves to supply energy for only 3-6 d once they reach the ocean. We compared our RMR and FMR values by establishing an interspecific RMR mass-scaling relationship for a wide range of species in the order Testudines and found a scaling exponent of 1.06. This study demonstrates the feasibility of using the DLW method to estimate energetic costs of free-living sea turtle hatchlings and emphasizes the need for metabolic studies in various life-history stages.


Asunto(s)
Animales Recién Nacidos/metabolismo , Metabolismo Energético/fisiología , Tortugas/metabolismo , Agua/metabolismo , Animales , Peso Corporal , Deuterio , Actividad Motora/fisiología , Isótopos de Oxígeno , Especificidad de la Especie
19.
Sci Rep ; 6: 37851, 2016 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-27886262

RESUMEN

Previous studies have shown that the world's largest reptile - the leatherback turtle Dermochelys coriacea - conducts flexible foraging migrations that can cover thousands of kilometres between nesting sites and distant foraging areas. The vast distances that may be travelled by migrating leatherback turtles have greatly complicated conservation efforts for this species worldwide. However, we demonstrate, using a combination of satellite telemetry and stable isotope analysis, that approximately half of the nesting leatherbacks from an important rookery in South Africa do not migrate to distant foraging areas, but rather, forage in the coastal waters of the nearby Mozambique Channel. Moreover, this coastal cohort appears to remain resident year-round in shallow waters (<50 m depth) in a relatively fixed area. Stable isotope analyses further indicate that the Mozambique Channel also hosts large numbers of loggerhead turtles Caretta caretta. The rare presence of a resident coastal aggregation of leatherback turtles not only presents a unique opportunity for conservation, but alongside the presence of loggerhead turtles and other endangered marine megafauna in the Mozambique Channel, highlights the importance of this area as a marine biodiversity hotspot.


Asunto(s)
Migración Animal , Conducta Alimentaria , Tortugas/fisiología , Animales , Conservación de los Recursos Naturales , Comunicaciones por Satélite , Sudáfrica , Telemetría/instrumentación
20.
Sci Rep ; 6: 27248, 2016 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-27264109

RESUMEN

The giant panda is an icon of conservation and survived a large-scale bamboo die off in the 1980s in China. Captive breeding programs have produced a large population in zoos and efforts continue to reintroduce those animals into the wild. However, we lack sufficient knowledge of their physiological ecology to determine requirements for survival now and in the face of climate change. We measured resting and active metabolic rates of giant pandas in order to determine if current bamboo resources were sufficient for adding additional animals to populations in natural reserves. Resting metabolic rates were somewhat below average for a panda sized mammal and active metabolic rates were in the normal range. Pandas do not have exceptionally low metabolic rates. Nevertheless, there is enough bamboo in natural reserves to support both natural populations and large numbers of reintroduced pandas. Bamboo will not be the limiting factor in successful reintroduction.


Asunto(s)
Conservación de los Recursos Naturales/métodos , Sasa/crecimiento & desarrollo , Ursidae/fisiología , Animales , Metabolismo Basal , Cruzamiento , China , Cambio Climático , Ecología , Especies en Peligro de Extinción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA