Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Molecules ; 27(22)2022 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-36431934

RESUMEN

Concerns have been raised about the safety and tolerability of phytosterol esters due to their vulnerability to oxidation. Herein, oxidation of the unsaturated fatty acid-phytosterol ester, namely ß-sitosteryl oleate, was observed in comparison to native ß-sitosterol after accelerated storage at 65 °C for 35 days in a bulk oil model system. Depending on the sterol structure, various chemical indices of lipid oxidation, including hydroperoxide value (HPV), thiobarbituric acid reactive substances (TBARS), p-anisidine value (AnV), and 7-keto derivatives, changed at varying rates in both samples. Such indicators for ß-sitosteryl oleate appeared to be obtained at higher concentrations than those for ß-sitosterol. The first order kinetic was used to describe the losses of ß-sitosteryl oleate and ß-sitosterol in bulk oil. It was discovered that the ß-sitosteryl oleate (k = 0.0202 day-1) underwent oxidative alteration more rapidly than ß-sitosterol (k = 0.0099 day-1). Results indicated that physical structure was the principal factor in the determination of storage stability of phytosterol and its ester. Research on antioxidants and storage techniques can be expanded in order to reduce the oxidative loss of phytosterol esters during storage and improve the safety and tolerability of phytosterol esters.


Asunto(s)
Ácido Oléico , Fitosteroles , Cinética , Oxidación-Reducción , Ácidos Grasos , Ésteres
2.
Molecules ; 27(16)2022 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-36014418

RESUMEN

Indigenous southern Thai non-glutinous rice varieties Kaab Dum, Khai Mod Rin, Yar Ko, Yoom Noon, and Look Lai made under four different processing conditions, white rice, brown rice, germinated brown rice, and rice grass, were assessed for antioxidant components and in vitro antioxidative activities. According to the findings, rice's antioxidant components and antioxidant activity were considerably impacted by both variety and processing. High levels of total extractable phenolic compounds (164−314 mg gallic acid equivalent (GAE)/kg, dry weight (dw)) and carotenoid (0.92−8.65 mg/100 g, dw) were found in all rice varieties, especially in rice grass and germinated brown rice, indicating that milling to generate white rice had an adverse effect on those components. Additionally, after germination, a higher γ-oryzanol concentration (9−14 mg/100 g, dw) was found. All rice varieties had higher ascorbic acid, phenolic compound, and carotenoid contents after sprouting. Overall, Yoom Noon rice grass had the highest total extractable phenolic content (p < 0.05). The rice grass from Yoom Noon/Look Lai/Kaab Dum had the highest ascorbic acid content (p < 0.05). The total carotenoid concentration of Look Lai rice grass was the highest, and Yoom Noon's germinated brown rice had the highest γ-oryzanol content (p < 0.05). All rice varieties' aqueous extracts had remarkable ABTS free radical scavenging activity, with Khai Mod Rin reaching the highest maximum value of 42.56 mmol Trolox equivalent/kg dw. Other antioxidant mechanisms, however, were quite low. Compared to germinated brown rice, brown rice, and white rice, rice grass often tended to have stronger antioxidant activity. Yar Ko rice grass was found to have the highest DPPH free radical scavenging activity (3.8 mmol Trolox equivalent/kg dw) and ferric reducing antioxidant power (FRAP) (4.6 mmol Trolox equivalent/kg dw) (p < 0.05). Khai Mod Rice grass had the most pronounced metal chelation activity (1.14 mmol EDTA equivalent/kg dw) (p < 0.05). The rice variety and processing conditions, therefore, influenced the antioxidant compounds and antioxidative properties of Thai indigenous rice. The results can be used as a guide to select the optimal rice variety and primary processing in order to satisfy the needs of farmers who want to produce rice as a functional ingredient and to promote the consumption of indigenous rice by health-conscious consumers.


Asunto(s)
Antioxidantes , Oryza , Antioxidantes/química , Ácido Ascórbico , Carotenoides/análisis , Radicales Libres , Oryza/química , Fenoles/química , Extractos Vegetales/química , Tailandia
3.
J Food Sci Technol ; 57(11): 4032-4043, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33071325

RESUMEN

Virgin coconut oil (VCO) and propylene glycol (PG) have received more attention as bio-based solvents for natural bioactive recovery in green extraction process. Here, maceration extraction and ultrasound-assisted extraction (UAE) of bioactive phenolics from mangosteen peel (MP) by VCO, PG and VCO-PG mixture were compared. The goal was to maximize the phenolic extraction and improve bioactivities. Based on a single-factor experiment for UAE with VCO, the optimal condition was sample to solvent ratio of 1:6.6 g/mL, amplitude of 55 µm, and extraction time of 7 min, which yielded total phenolic content of 365 mg GAE/100 g. Regarding the extraction methods and bio-based solvents, UAE with mixed VCO-PG was not only provided greater polyphenol yield in a shorter time, but it also enhanced the bioactivities (radical scavenging, antibacterial, and antidiabetic activities) of the extract. Therefore, UAE can be potentially used in combination with bio-based solvents, especially mixed VCO-PG, for maximizing bioactive phenolic isolation from MP. This study provided an alternative method for production of bio-based oil solution from MP which can be directly used as a functional ingredient in emulsion based food, neutraceutical and cosmetic products.

4.
J Food Sci Technol ; 54(12): 3979-3988, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29085140

RESUMEN

Effect of cold carbonated water (CW) washing on the biochemical properties and gel characteristics of mackerel surimi was evaluated. Three washing cycles were performed with different orders of washing medium including T1 (water, water and water), T2 (CW, water and water), T3 (CW, CW and water) and T4 (CW, CW and CW). The results showed that CW washing, especially T4, caused the decrease in pH, Ca2+-ATPase activity and surface hydrophobicity and led to the increase in reactive sulfhydryl content. Regardless of washing treatment, haem protein of surimi decreased significantly compared to unwashed mince. However, carbonated water did not improve haem protein removal. The highest lipid reduction was found in T1 and T2. Gels from all CW washing treatments had a comparable whiteness. Breaking force of CW surimi gel increased with increasing washing cycle (T2 < T3 < T4). Deformations of all surimi gels were not much different (~7 mm). Expressible drip increased with increasing CW washing cycle. Numbers of jointed spherical matrices were found in surimi gel microstructures. With increasing CW washing cycle, densely packed aggregates were formed. Therefore, CW washing with appropriate cycle can be used as an alternative means for mackerel surimi production.

5.
Foods ; 13(4)2024 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-38397523

RESUMEN

The effect of lecithin addition on the gelling characteristics and oxidative stability of single-washed mackerel (Auxis thazard) surimi was investigated in this study. Surimi was chopped in the presence of 2.5% (w/w) NaCl with different concentrations of lecithin (0, 0.1, 0.5, 1, and 1.5 g/100 g surimi). The rheological behavior, gel-forming ability, microstructure, and lipid oxidation of lecithin-added surimi varied significantly depending on lecithin content. When compared to the control, lecithin at 0.1, 0.5, and 1 g/100 g improved the breaking force of the gel (p < 0.05). The breaking force of the gel decreased significantly as lecithin concentration increased (up to 1.5 g/100 g) (p < 0.05). Deformation, on the other hand, reacted differently to the lecithin than it did to the breaking force. At a lecithin level of 0.1 g/100 g, the surimi gel displayed improved deformation (p < 0.05). Nonetheless, at higher doses (0.5-1.5 g/100 g), lecithin considerably reduced surimi gel deformation (p < 0.05), and the gel containing lecithin at 1.5 g/100 g showed significantly decreased deformation. Surimi with 0.1 g/100 g lecithin had the lowest expressible drip (p < 0.05). In general, lecithin at concentrations ranging from 0.1 to 1 g/100 g reduced expressible drip (p < 0.05), but not at 1.5 g/100 g, which was equivalent to the control (p > 0.05). Adding lecithin to mackerel surimi improved its whiteness slightly, regardless of concentration. Lecithin impacted the microstructures of surimi gel in a concentration-dependent manner. Lecithin at a concentration of 0.1 g/100 g produced a densely packed network with small, jointed clusters and minimal holes within the gel. Joined clusters in the gel were reduced by 0.5-1.5 g/100 g lecithin, and continuous aggregates predominated. Surprisingly, at higher doses of lecithin, notably 1.5 g/100 g, porous structures with continuous voids were perceived. Surimi gels treated with various lecithin doses had lower thiobarbituric acid reactive substances (TBARS) levels than the control (p < 0.05). Overall, lecithin at a low concentration of 0.1 g/100 g was most effective at improving the texture, increasing water-holding capacity, lightening the color, and delaying lipid oxidation of single-washed mackerel surimi.

6.
ACS Appl Mater Interfaces ; 16(31): 40836-40847, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39052986

RESUMEN

The stimulus-responsive regulation of enzyme catalytic activity and selectivity provides a new opportunity to extend the functionality and efficiency of immobilized enzymes. This work aims to design and synthesize a thermo-switchable enzyme@MOF for size-selective biocatalysis and biosensing through the immobilization of Candida rugosa lipase (CRL) within ZIF-8 functionalized with thermally responsive polymer, poly(N-isopropylacrylamide) (PNIPAM) (CRL@ZIF-8-PNIPAM). Unlike free CRL, which does not demonstrate substrate selectivity, we can reversibly tune the pore size of the ZIF-8-PNIPAM nanostructures (open pores or blocked pores) through temperature stimulus and subsequently modulate the substrate selectivity of CRL@ZIF-8-PNIPAM. CRL@ZIF-8-PNIPAM had the highest hydrolytic activity for small molecules (12 mM p-nitrophenol/mg protein/min, 4-nitrophenyl butyrate (p-NP Be)) and the lowest hydrolytic activity for large molecules (0.16 mM p-nitrophenol/mg protein/min, 4-nitrophenyl palmitate (p-NP P)). In addition, CRL@ZIF-8-PNIPAM demonstrated thermo-switchable behavior for large molecules (p-NP P). The p-NP P hydrolytic activity of CRL@ZIF-8-PNIPAM was significantly lower at 40 °C (blocked pores) than at 27 °C (open pores). However, the transition of blocked pores and open pores is a gradual process that resulted in a delay in the "thermo-switchable" catalytic behavior of CRL@ZIF-8-PNIPAM during thermal cycling. CRL@ZIF-8-PNIPAM was also successfully used for the fabrication of electrochemical biosensors for the selective biosensing of pesticides with different molecular sizes.


Asunto(s)
Resinas Acrílicas , Biocatálisis , Técnicas Biosensibles , Enzimas Inmovilizadas , Lipasa , Estructuras Metalorgánicas , Técnicas Biosensibles/métodos , Estructuras Metalorgánicas/química , Lipasa/química , Lipasa/metabolismo , Enzimas Inmovilizadas/química , Resinas Acrílicas/química , Temperatura , Nitrofenoles/química , Zeolitas/química , Proteínas Fúngicas/química , Saccharomycetales
7.
Nanomedicine (Lond) ; 19(14): 1313-1329, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38884141

RESUMEN

Aim: Polymeric scaffolds were developed fortified with nanovesicle-encapsulated individual curcumin (CUR) and tetrahydrocurcumin (THC) for improved therapeutic efficacy due to their low stability and efficacy in native form. Method: Nanovesicle-encapsulated individual CUR and THC were fabricated using thin-film hydration techniques and characterized. Results & conclusion: CUR/THC in native and vesicle-encapsulated form demonstrated diminished LPS-instigate nitric oxide (NO) levels in macrophage cells in a concentration-dependent demeanor. However, vesicle-encapsulated CUR/THC inhibited NO production at lower concentrations, compared with the native CUR/THC form. Furthermore, the scaffold fortified with vesicle-encapsulated CUR/THC demonstrated improved physical properties with excellent antioxidant, biocompatibility, and human keratinocyte cell proliferation ability. The results recommended that nanovesicle-encapsulated THC can be retained as a potential substitute for CUR with improved therapeutic efficacy.


[Box: see text].


Asunto(s)
Proliferación Celular , Curcumina , Óxido Nítrico , Curcumina/farmacología , Curcumina/química , Curcumina/análogos & derivados , Humanos , Óxido Nítrico/metabolismo , Proliferación Celular/efectos de los fármacos , Animales , Células RAW 264.7 , Ratones , Queratinocitos/efectos de los fármacos , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Antioxidantes/farmacología , Antioxidantes/química , Polímeros/química , Portadores de Fármacos/química
8.
Foods ; 13(11)2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38890920

RESUMEN

This study thoroughly examined the proximate composition, bioactive composition, and in vitro biological activities of three different cultivars of papaya leaf extracts (PLEs) as potential functional ingredients and nutraceuticals. The dark green leaves of three papaya cultivars, Khaek Dam (KD), Holland (H), and Thai Local (L), were used in this study. The protein content of the leaves ranged from 25.96 to 32.18%, the fat content ranged from 7.34 to 11.66%, the carbohydrate content ranged from 5.80 to 17.91%, the moisture content ranged from 6.02 to 6.49%, the ash content ranged from 11.23 to 12.40%, and the fiber content ranged from 23.24 to 38.48%. The L cultivar possessed significantly higher protein and carbohydrate contents, whereas the H cultivar had the highest ash content (p < 0.05). The total phenolic content (TPC) ranged from 113.94 to 173.69 mg GAE/g extract, with the KD cultivar having the highest TPC (p < 0.05). Several metabolic compounds such as phenolic compounds (particularly kaempferol, isorhamnetin, quercetin, ferulic acid, isoferulic acid, salicylic acid, sinapic acid, syringic acid, and vanillin), terpenoids (such as eucalyptol), glycosides, and indole were identified. The PLE from the KD cultivar had the highest levels of DPPH• inhibition, metal chelation, reducing power, and antidiabetic activity (p < 0.05), suggesting superior biological activity. All three PLEs reduced the proliferation of RAW 264.7 cells in a dose-dependent manner with low nitric oxide formation. These results indicate that the papaya leaf, particularly from the KD cultivar, could be a promising source of functional food ingredients.

9.
Food Chem ; 460(Pt 3): 140663, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39142199

RESUMEN

Gestational diabetes mellitus (GDM) is a prevalent metabolic disorder during pregnancy that alters the metabolites in human milk. Integrated Gas Chromatography-Mass Spectrometry (GC-MS) and Liquid Chromatography-Mass Spectrometry (LC-MS) were employed for comprehensive identification and comparison of metabolites in mature human milk (MHM) from women with and without GDM. A total of 268 differentially expressed metabolites (DEMs) were identified. Among these, linoleic acid, arachidonic acid, 9R-HODE and L-glutamic acid were significantly elevated and 12,13-DHOME was significantly decreased in MHM of women with GDM. These metabolites are significantly enriched in linoleic acid metabolism, fatty acid biosynthesis, galactose metabolism and ABC transporters pathways. Disorders in these metabolic pathways are associated with insulin resistance and poor glucose metabolism indicating these conditions may persist postpartum.

10.
Foods ; 13(15)2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39123504

RESUMEN

This study focused on the production of protein isolates from mantis shrimp (MS). The pH-shift method was investigated to understand its impact on the protein yield, quality, and properties of the produced isolates. The first step was determining how the pH affected the protein solubility profile, zeta potential, and brown discoloration. The pH-shift process was then established based on the maximum and minimum protein solubilization. The solubilization pH had a significant impact on the mass yield and color of the produced protein, with a pH of 1.0 producing the maximum mass in the acidic region, whereas a maximum was found at a pH of 12.0 in the alkaline region (p < 0.05). Both approaches yielded mantis shrimp protein isolates (MPIs) with precipitation at a pH of 4.0 and a mass yield of around 25% (dw). The TCA-soluble peptide and TBARS levels were significantly lower in the MPI samples compared to MS raw material (p < 0.05). The MPIs maintained essential amino acid index (EAAI) values greater than 90%, indicating a high protein quality, and the pH-shift procedure had no negative impact on the protein quality, as indicated by comparable EAAI values between the mantis shrimp protein isolate extract acid (MPI-Ac), mantis shrimp protein isolate extract alkaline (MPI-Al), and MS raw material. Overall, the pH-shift approach effectively produced protein isolates with favorable quality and nutritional attributes.

11.
Foods ; 12(2)2023 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-36673372

RESUMEN

Non-protein nitrogen (NPN) is abundant in stingray (Himantura signifier) muscle, which also has in vitro antioxidant activity. In this study, NPN from stingray muscle was further investigated for its antioxidant properties in lecithin liposome and oxymyoglobin model systems to validate its protective impact against lipid and myoglobin oxidations during storage for 120 min at various temperatures (4, 25, and 60 °C). NPN solution (10 ppm nitrogen) was added to the lecithin liposome system at different concentrations (0, 0.5, 1, 5, and 10% (v/v)) to investigate its effects on lipid stability by measuring the conjugated diene (CD), peroxide value (PV), and thiobarbituric acid reactive substances (TBARS) contents. In the oxymyoglobin system, NPN solution (10 ppm nitrogen) was also added at different concentrations (0, 0.5, 1, 5, and 10% (v/v)) to the oxymyoglobin solution in order to examine its effect on the stability of myoglobin by determining the contents of oxymyoglobin, metmyoglobin, and protein carbonyl. According to the findings, in all NPN concentrations, the system incubated at 4 °C had the lowest levels of lipid oxidation as measured by CD, PV, and TBARS values, and the lowest levels of myoglobin oxidation. At all incubating temperatures, the oxymyoglobin and lipid oxidation of all model systems tended to rise with the lengthening of the incubation duration. With the addition of 5% NPN, however, the lowest CD, PV, TBARS, oxymyoglobin oxidation, metmyoglobin formation, and protein carbonyl content were all observable, and the remarkable result was discovered during incubation at 4 °C. The results indicate that stingray NPN, especially at 5%, can be used to delay lipid and myoglobin oxidation, particularly at 4 °C. In order to prolong the shelf life of products with dark-fleshed fish and red meat, stingray NPN might be used as an alternative antioxidant to delay the oxidation of lipid and myoglobin during cold chain storage.

12.
Foods ; 12(20)2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37893710

RESUMEN

This study highlights a promising single washing method for producing dark-fleshed mackerel surimi aided by ultrasonication in conjunction with cold carbonated water containing 0.6% NaCl and mixed antioxidants (0.5% EDTA/0.2% sodium erythorbate/0.2% sodium tripolyphosphate) (CSA). Different washing periods (5, 10, and 15 min) with and without ultrasound were tested. Unwashed mince (A1) and conventional water-washed surimi (10 min/cycle, 3 cycles) (A2) were used as controls. A3, A4, and A5 were subjected to ultrasound-assisted washing for 5, 10, and 15 min, respectively, whereas A6, A7, and A8 had non-ultrasound-assisted washing for 5, 10, and 15 min. Results showed that the surimi yield decreased as the ultrasonic treatment time increased from 5 to 15 min (p < 0.05). Increased ultrasonic time resulted in greater protein denaturation, protein oxidation, myoglobin removal, and lipid oxidation in surimi (p < 0.05). Surimi produced by CSA ultrasonication for 5 min (A3), on the other hand, had a comparable overall quality to A2 surimi (p > 0.05). The correspondence gel (A3) outperformed the control gel (A2) in terms of gel strength, whiteness, and water-holding capacity (p < 0.05). The formation of regularly continuous, more organized, and smooth network structures in surimi gel was observed in A2 and A3 gels, whereas sparse and larger pore sizes were noticed in surimi gels produced by longer ultrasonic treatment. All of the surimi gels had identical FTIR spectra, indicating that the functional groups of the protein gel were consistent throughout. As a result, a single 5 min CSA-ultrasonic washing could potentially yield surimi of comparable quality to conventional washing. This could pave the way for the development of dark-fleshed fish surimi, which would require less washing time and produce less waste water.

13.
Foods ; 12(17)2023 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-37685111

RESUMEN

Mackerel (Auxis thazard), a tropical dark-fleshed fish, has the potential to be used in the production of surimi. It is necessary to identify the optimal washing method to make better use of this species since efficient washing is the most important step in surimi processing to ensure maximal gelling and high-quality surimi. The purpose of this study was to evaluate the combined effect of cold carbonated water (CW) with NaCl and antioxidants in washing media, so-called antioxidant-infused soda-saline solution, on lipid and myoglobin removal efficacy, biochemical characteristics, gelling properties, sensory features, and the oxidative stability of mackerel surimi in comparison with unwashed mince (T1) and conventional water washed surimi (T2). Mackerel mince was washed with CW in the presence of 0.6% NaCl at a medium to mince ratio of 3:1 (v/w) without antioxidant (T3) or with the addition of 1.5 mM EDTA plus 0.2% (w/v) sodium erythorbate and 0.2% sodium tripolyphosphate (T4), 100 mg/L gallic acid (T5), and 5 mM citric acid containing 8 mM calcium chloride (T6). During the first washing cycle, the antioxidants were mixed into the washing medium. The second and third washing cycles were then completed with cold water. The yields of all treatments were roughly 75-83%, based on the gross weight of the raw mince. The pH of the surimi was in a range of 5.47-6.46. All of the surimi had higher reactive sulfhydryl (SH) content and surface hydrophobicity but lower Ca2+-ATPase activity than unwashed mince (p < 0.05). After washing, lipids decreased significantly (p < 0.05), accounted for a 65-76% reduction. The T2 surimi had the highest peroxide value (PV). T1 had the lowest conjugated diene value. T1 and T4 surimi had the lowest TBARS value (p < 0.05). A lower non-heme iron level was found in all antioxidant-treated samples than in T1. Washing can increase the redox stability of myoglobin regardless of the washing media, as seen by the relatively low metmyoglobin levels. According to the dynamic viscoelastic behavior, all surimi and unwashed mince underwent the same degree of sol-gel transition following heat gelation. T1 showed the lowest breaking force, deformation, gel strength, and whiteness (p < 0.05). Surimi made from T4 or T5 had the highest gel strength when both breaking and deformation were considered, but the latter's expressible drip was noticeably higher. Surimi gel appears to be stabilized against lipid oxidation, as demonstrated by low PV and TBARS levels, when produced with T4. Because of the low level of TBARS, all 10 panelists rated rancid odor as low (~1 out of 4), with no significant variations across treatments. Only treatments with T4 and T6 tended to have a lower fishy odor score as compared to unwashed mince. Scanning electron microscope demonstrated that surimi gels washed with all washing media exhibited microstructures that were very comparable, with the exception of the T6 treatment, which had big pores and aggregates. Based on the quality features, T4 appeared to be the optimal medium to enhance the gel functionality of mackerel surimi.

14.
Foods ; 12(21)2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-37959012

RESUMEN

The objective of this research was to improve the protein extraction processes of Rastrelliger kanagurta (Indian mackerel) to generate protein isolate with enhanced bio-physico-chemical properties and gel-forming ability. To achieve this, two novel approaches were designed that utilized an additional alkaline separation step and were compared to a conventional process: acid solubilization → alkaline solubilization → pI and acid solubilization → pI → alkaline solubilization. The novel extraction designs resulted in a lower lipid content, lipid oxidation, and TCA-soluble peptides, as well as improving the color and sensory features of the refined proteins, which corresponded to the lowest total heme pigments (p < 0.05). Furthermore, the protein isolate recovered with the modified processes showed significant changes in biochemical properties (decreases in Ca2+-ATPase activity/reactive sulfhydryl content and an increase in surface hydrophobicity) and dynamic rheological behavior. As a result, by altering the extraction procedure it was possible to obtain improved gel characteristics such as gel strength, color, expelled moisture, and improved gel microstructure. Moreover, this study demonstrated that the gel network was partly stabilized by disulfide bonds, according to SDS-PAGE. Overall, this study demonstrates that by optimizing protein extraction procedures a considerable improvement in quality can be achieved and that an additional alkaline extraction after isoelectric point precipitation results in the optimized gel-forming ability of mackerel proteins.

15.
Foods ; 12(11)2023 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-37297504

RESUMEN

Salted eggs are normally produced by treating fresh duck eggs with a high salt concentration in order to acquire distinctive features and excellent preservation capabilities as a result of a series of physicochemical changes. This method, however, induces a high salt content in the product. The goal of this research was to create a new way of producing mildly salted duck eggs using ozonized brine salting. The brine was made by dissolving NaCl (26% w/v) in water or ozonized water at a concentration of 50 ng ozone/mL (ozonized brine). Compared to brine, ozonized brine resulted in salted eggs with reduced ultimate salt levels in both albumen and yolk (p < 0.05). The Haugh unit of the salted eggs generated by ozonized brine was similar to that of the brine-made salted egg group (p > 0.05), but the salted egg produced by ozonized brine matured and solidified faster because the yolk index (0.62) was higher than that of the brine (0.55) (p < 0.05). The final pH of salted eggs generated with brine and ozonized brine was not different (p > 0.05). Regardless of the salting method, both salted eggs contained low TVB-N content (<10 mg/100 g). Ozonized brine increased the protein carbonyl content in salted albumen, which may be related to albumen protein aggregation and served as a salt diffusion barrier. However, after boiling the salted egg, the protein carbonyl level was comparable to that of fresh albumen. The TBARS levels of boiled salted albumen prepared with brine and ozonized brine were comparable (p > 0.05), and the value was extremely low (~0.1 mg MDA equivalent/kg). The TBARS value of the salted yolk prepared with brine was higher than that of the salted yolk prepared with ozonized brine (p < 0.05), and both salted yolks showed increased TBARS values after cooking (p < 0.05). The albumen and yolk components appeared to be altered similarly by both brine and ozonized brine, according to the FTIR spectra. Furthermore, the appearance and color of the yolk and albumen in salted eggs prepared with brine and ozonized brine were comparable. Boiled salted albumen produced with ozonized brine had a denser structure with fewer voids. This could be attributed to the final salted egg's lower salt content and lower salt diffusion rate, which were likely caused by protein oxidation and, as a result, aggregation when ozonized brine was used.

16.
Foods ; 12(18)2023 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-37761183

RESUMEN

Herein, the effect of supplementing ground sago palm trunk (GSPT) with varying concentrations of plant-based ingredients (PIs), including rice bran (RB), soybean meal (SM), and perilla seed (PS), on the nutritional profile of sago palm weevil larvae (SPWL) was investigated. Increased PS intake induced an increase in α-linolenic acid level and a reduction in the n-6/n-3 ratio in SPWL (p < 0.05). The presence of fatty acids in SPWL was determined predominantly by the fatty acid profile in the feed. The activities of Δ5 + Δ6 desaturases and thioesterase were not different among SPWL fed different diets (p < 0.05); however, PI intake resulted in low suppression of fads2 gene expression. RB, SM, and PS at the appropriate concentrations of 17.5%, 8.8%, and 7.0% in GSPT (F3 diet), respectively, boosted both protein quantity and quality of SPWL, as indicated by higher levels of essential amino acids, particularly lysine, than the FAO protein reference. Therefore, incorporating PIs into a regular diet is a viable method for enhancing the nutritional value and sustainability of farm-raised SPWL as a potential alternative source of high-quality lipid and protein.

17.
Foods ; 12(15)2023 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-37569220

RESUMEN

For long-term food sustainability and security, it is crucial to recognize and preserve Indigenous rice varieties and their diversity. Yoom Noon is one of the non-glutinous rice (Oryza sativa L.) varieties being conserved as part of the Phanang Basin Area Development Project, which is administered by the Royal Initiative of Nakhon Si Thammarat in Southern Thailand. The goal of this research was to compare the nutritional profiles of Yoom Noon white rice, brown rice, and germinated brown rice. The results indicated that carbohydrate content was found to be the most plentiful macronutrient in all processed Yoom Noon rice types, accounting for 67.1 to 81.5% of the total. White rice had the highest carbohydrate content (p < 0.05), followed by brown rice and germinated brown rice. Brown rice had more protein and fat than white rice (p < 0.05). The maximum protein, dietary fiber, and ash content were found in germinated brown rice, followed by brown rice and white rice (p < 0.05). White rice had the highest amylose content, around 24% (p < 0.05), followed by brown rice (22%), and germinated brown rice (20%). Mg levels in all white, brown, and germinated brown rice ranged from 6.59 to 10.59 mg/100 g, which was shown to be the highest among the minerals studied (p < 0.05). Zn (4.10-6.18 mg/100 g) was the second most abundant mineral, followed by Fe (3.45-4.92 mg/100 g), K (2.61-3.81 mg/100 g), Mn (1.20-4.48 mg/100 g), Ca (1.14-1.66 mg/100 g), and Cu (0.16-0.23 mg/100 g). Se was not found in any processed Yoom Noon rice. Overall, brown rice had the highest content of macro- and micronutrients (p < 0.05). In all processed rice, thiamin was found in the highest amount (56-85 mg/100 g), followed by pyridoxine (18-44 g/100 g) and nicotinamide (4-45 g/100 g) (p < 0.05). Riboflavin was not identified in any of the three types of processed Yoom Noon rice. Individual vitamin concentrations varied among processed rice, with germinated brown rice having the highest thiamine content by around 1.5 and 1.3 folds compared to white and brown rice, respectively. The GABA level was the highest in germinated rice (585 mg/kg), which was around three times higher than in brown rice (p < 0.05), whereas GABA was not detectable in white rice. The greatest total extractable flavonoid level was found in brown rice (495 mg rutin equivalent (RE)/100 g), followed by germinated brown rice (232 mg RE/100 g), while white rice had no detectable total extractable flavonoid. Brown rice had the highest phytic acid level (11.2 mg/100 g), which was 1.2 times higher than germinated brown rice (p < 0.05). However, phytic acid was not detected in white rice. White rice (10.25 mg/100 g) and brown rice (10.04 mg/100 g) had the highest non-significant rapidly available glucose (RAG) values, while germinated brown rice had the lowest (5.33 mg/100 g). In contrast, germinated brown rice had the highest slowly available glucose (SAG) value (9.19 mg/100 g), followed by brown rice (3.58 mg/100 g) and white rice (1.61 mg/100 g) (p < 0.05).

18.
Foods ; 11(21)2022 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-36360059

RESUMEN

This work comparatively investigated the effects of different levels (0, 1, 3, and 5%, w/w) of cricket protein powder (CP) and soy protein isolate (SPI) on the gel properties of mackerel surimi. Both SPI and CP enhanced the rheological properties of surimi pastes during heating, as indicated by the increase in G' and G″ and the decrease in tan δ. With increasing SPI content, the proteolytic inhibition, gel properties, water-holding capacity, and textural profiles of surimi gel were markedly enhanced. Molecular driving-force results showed that SPI markedly promoted the hydrophobic interaction, while disulfide bonds were dominant in CP-added gel. However, the whiteness of surimi gels tended to decrease with the increased levels of both additives, in particular CP. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) demonstrated that SPI hindered the polymerization of myosin heavy chain while CP participated in the formation of non-disulfide covalent bonds with actin. Fourier transform infrared (FTIR) spectra indicated that CP and SPI did not influence the secondary structure of proteins in surimi. Scanning electron microscopy (SEM) demonstrated that CP or SPI induced the myofibrillar protein to form smoother and compact gel network structures. Overall acceptability of the mackerel surimi gel can be improved by the incorporation of 5% SPI while CP had a negative impact on several parameters. However, CP showed the remarkable ability to prevent the lipid oxidation of the gel after storage at 4 °C for 7 days. Overall, both SPI and CP demonstrated positive impacts on the gelling characteristics of mackerel surimi; however, SPI was more advantageous than CP in terms of the gel-strengthening effect and sensory qualities. This study offered a potential use for plant and insect proteins as functional and nutritional ingredients for the production of dark-fleshed fish surimi.

19.
Foods ; 11(5)2022 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-35267327

RESUMEN

The goal of this work is to explore if pH-shift processing could be used as a cold refinery technique to manufacture pig brain protein isolate (PI). Pig brain protein had the highest solubility at pH 2 (acid method) and pH 12 (alkaline method). As the protein solution's zeta-potential was near 0 with the lowest solubility, pH 5.0 was chosen as the precipitation pH. Alkaline process produced a 32% dry matter yield with phospholipid content of 35 mg/100 g. The alkaline-made PI was better at forming soft gels and had good emulsifying and foaming capabilities. Although the acid-made PI included less residual lipid and total haem protein and was whiter in colour, it could not be gelled. Acid-made PI was more prone to lipid oxidation with a poorer ability to function as an emulsifier and foaming agent. Thus, functional proteins from pig brain may be isolated using the alkaline pH-shift technique.

20.
Foods ; 11(16)2022 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-36010430

RESUMEN

Due to the potential reduction in starch availability, as well as the production of the distinct physico-chemical characteristics of starch in order to improve health benefits, the formation of starch-lipid complexes has attracted significant attention for improving the quantity of resistant starch (RS) content in starchy-based foods. The purpose of this research was to apply ultrasonication to produce intermediate amylose rice (Oryza sativa L.) cv. Noui Khuea (NK) starch-fatty acid (FA) complexes. The effects of ultrasonically synthesized conditions (ultrasonic time, ultrasonic amplitude, FA chain length) on the complexing index (CI) and in vitro digestibility of the starch-FA complex were highlighted. The optimum conditions were 7.5% butyric acid with 20% amplitude for 30 min, as indicated by a high CI and RS contents. The ultrasonically treated starch-butyric complex had the highest RS content of 80.78% with a V-type XRD pattern and an additional FTIR peak at 1709 cm-1. The increase in the water/oil absorption capacity and swelling index were observed in the starch-lipid complex. The pasting viscosity and pasting/melting temperatures were lower than those of native starch, despite the fact that it had a distinct morphological structure with a high proportion of flaky and grooved forms. The complexes were capable of binding bile acid, scavenging the DPPH radical, and stimulating the bifidobacterial proliferation better than native starch, which differed depending on the FA inclusion. Therefore, developing a rice starch-lipid complex can be achieved via ultrasonication.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA