Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Amino Acids ; 54(11): 1505-1517, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35927507

RESUMEN

Methylmalonic acidemia is a neurometabolic disorder biochemically characterized by the accumulation of methylmalonic acid (MMA) in different tissues, including the central nervous system (CNS). In this sense, it has been shown that high levels of this organic acid have a key role in the progressive neurological deterioration in patients. Astroglial cells actively participate in a wide range of CNS functions, such as antioxidant defenses and inflammatory response. Considering the role of these cells to maintain brain homeostasis, in the present study, we investigated the effects of MMA on glial parameters, focusing on redox homeostasis and inflammatory process, as well as putative mediators of these events in C6 astroglial cells. MMA decreased cell viability, glutathione levels, and antioxidant enzyme activities, increased inflammatory response, and changed the expression of nuclear factor erythroid 2-related factor 2 (Nrf2), nuclear factor kappa B (NFκB), peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), inducible nitric oxide synthase (iNOS), cyclooxygenase 2 (COX-2), and adenosine receptors, suggesting that these transcriptional factors and proteins may underlie the glial responses induced by MMA. Moreover, we also demonstrated the protective roles of melatonin and resveratrol against MMA-induced inflammation and decrease in glutathione levels. In summary, our findings support the hypothesis that astroglial changes are associated with pathogenesis of methylmalonic acidemia. In addition, we showed that these cells might be potential targets for preventive/therapeutic strategies by using molecules, such as melatonin and resveratrol, which mediated glioprotection in this inborn error of metabolism.


Asunto(s)
Melatonina , Ácido Metilmalónico , Animales , Ratas , Humanos , Resveratrol/farmacología , Astrocitos , Melatonina/farmacología , Antioxidantes/farmacología , Ratas Wistar , Oxidación-Reducción , Glutatión/farmacología , Homeostasis
2.
Ecotoxicol Environ Saf ; 205: 111127, 2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-32846293

RESUMEN

Trichlorfon is an organophosphate insecticide that is widely used on fish farms to control parasitic infections. It has been detected in freshwater ecosystems as well as in fishery products. There is a growing body of evidence to suggest that certain feed additives may reduce or prevent pesticide-induced toxicity in fish. The aim of the present study was to determine whether acute exposure to trichlorfon would alter bioenergetic homeostasis and alter fatty acid profiles in muscles of silver catfish (Rhamdia quelen). We also sought to determine whether rutin prevents or reduces these effects. Cytosolic and mitochondrial creatine kinase (CK) and activities of complexes II-III and IV in muscle were significantly inhibited by exposure to 11 mg/L trichlorfon for 48 h compared to effects in the unexposed group. Total content of polyunsaturated fatty acids (omega-3 and omega-6) were significantly lower in muscle of silver catfish exposed to 11 mg/L trichlorfon for 48 h than in the unexposed group. Addition of 3 mg rutin/kg feed increased CK activity and prevented inhibition of complex IV activity, as well as preventing all alterations of muscle fatty acid profiles elicited by exposure to trichlorfon. No significant differences were observed between groups with respect to muscle adenylate kinase or pyruvate kinase activities, as well as total content of saturated and monounsaturated fatty acids. Our findings suggest that exposure (48 h) to 11 mg trichlorfon/L water inhibits cytosolic and mitochondrial CK activity in muscle. Trichlorfon also affects activities of complexes II-III and IV in respiratory chain, with important consequences for adenosine triphosphate production. The pesticide alters fatty acid profiles in the fish and endangers human consumers of the product. The most important finding of the present study is that inclusion of rutin improves bioenergetic homeostasis and muscle fatty acid profiles, suggesting that it reduces trichlorfon-induced muscle damage.


Asunto(s)
Bagres/metabolismo , Metabolismo Energético/efectos de los fármacos , Ácidos Grasos/metabolismo , Insecticidas/toxicidad , Músculos/efectos de los fármacos , Rutina/farmacología , Triclorfón/toxicidad , Adenosina Trifosfato/metabolismo , Adenilato Quinasa/metabolismo , Alimentación Animal , Animales , Bagres/crecimiento & desarrollo , Creatina Quinasa/metabolismo , Dieta , Aditivos Alimentarios , Homeostasis , Mitocondrias Musculares/efectos de los fármacos , Mitocondrias Musculares/metabolismo , Músculos/metabolismo
3.
Mol Biol Rep ; 46(6): 5897-5908, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31410688

RESUMEN

Phenylketonuria (PKU) is a metabolic disorder accumulating phenylalanine (Phe) and its metabolites in plasma and tissues of the patients. Regardless of the mechanisms, which Phe causes brain impairment, are poorly understood, energy deficit may have linked to the neurotoxicity in PKU. It is widely recognized that creatine is involved in maintaining of cerebral energy homeostasis. Because of this, in a previous work, we incorporated it into liposomes and this increased the concentration of creatine in the cerebral cortex. Here, we examined the effect of creatine nanoliposomes on parameters of oxidative stress, enzymes of phosphoryl transfer network, and activities of the mitochondrial respiratory chain complexes (RCC) in the cerebral cortex of young rats chemically induced hyperphenylalaninemia (HPA). HPA was induced with L-phenylalanine (5.2 µmol/g body weight; twice a day; s.c.), and phenylalanine hydroxylase inhibitor, α-methylphenylalanine (2.4 µmol/g body weight; once a day; i.p.), from the 7th to the 19th day of life. HPA reduced the activities of pyruvate kinase, creatine kinase, and complex II + III of RCC in the cerebral cortex. Creatine nanoliposomes prevented the inhibition of the activities of the complexes II + III, caused by HPA, and changes oxidative profile in the cerebral cortex. Considering the importance of the mitochondrial respiratory chain for brain energy production, our results suggesting that these nanoparticles protect against neurotoxicity caused by HPA, and can be viable candidates for treating patients HPA.


Asunto(s)
Creatina/metabolismo , Liposomas/metabolismo , Fenilcetonurias/metabolismo , Animales , Encéfalo/metabolismo , Corteza Cerebral/metabolismo , Corteza Cerebral/patología , Creatina/fisiología , Creatina Quinasa/metabolismo , Metabolismo Energético , Femenino , Hipocampo/metabolismo , Masculino , Nanopartículas/uso terapéutico , Oxidación-Reducción , Estrés Oxidativo/efectos de los fármacos , Fenilalanina/metabolismo , Ratas , Ratas Wistar
4.
Microb Pathog ; 122: 53-57, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29886086

RESUMEN

Aeromonas caviae is a Gram-negative bacterium rarely found in fish but it can be associated to high mortality of infected animals. The disease pathogenesis in fish associated to liver and kidney lesions directly linked to the initiation and progression of the disease remains poorly understood. Thus, the aim of this study was to evaluate whether A. caviae infection causes oxidative stress in liver and kidney of silver catfish Rhamdia quelen, and its involvement in disease pathogenesis. Reactive oxygen species (ROS) and thiobarbituric acid reactive substances (TBARS) levels increased in liver and kidney of fish experimentally infected by A. caviae compared to the control uninfected group. On the other hand, non-protein sulfhydryl (NPSH) levels decreased in both tissues of infected animals, while the glutathione S-transferase (GST) activity decreased only in the hepatic tissue. No difference was observed between groups in both tissues regarding superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione reductase (GR) activities and glutathione (GSH) levels. In summary, the disturbance of hepatic and renal antioxidant/oxidant equilibrium contributes to the pathophysiology of the disease in fish experimentally infected by A. caviae.


Asunto(s)
Aeromonas caviae/crecimiento & desarrollo , Antioxidantes/metabolismo , Enfermedades de los Peces/microbiología , Enfermedades de los Peces/patología , Infecciones por Bacterias Gramnegativas/veterinaria , Oxidantes/metabolismo , Estrés Oxidativo , Animales , Bagres , Infecciones por Bacterias Gramnegativas/microbiología , Infecciones por Bacterias Gramnegativas/patología , Riñón/microbiología , Riñón/patología , Hígado/microbiología , Hígado/patología , Especies Reactivas de Oxígeno/análisis
5.
Biochim Biophys Acta ; 1862(11): 2063-2074, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27523630

RESUMEN

Patients affected by sulfite oxidase (SO) deficiency present severe seizures early in infancy and progressive neurological damage, as well as tissue accumulation of sulfite, thiosulfate and S-sulfocysteine. Since the pathomechanisms involved in the neuropathology of SO deficiency are still poorly established, we evaluated the effects of sulfite on redox homeostasis and bioenergetics in cerebral cortex, striatum, cerebellum and hippocampus of rats with chemically induced SO deficiency. The deficiency was induced in 21-day-old rats by adding 200ppm of tungsten, a molybdenum competitor, in their drinking water for 9weeks. Sulfite (70mg/kg/day) was also administered through the drinking water from the third week of tungsten supplementation until the end of the treatment. Sulfite decreased reduced glutathione concentrations and the activities of glutathione reductase and glutathione S-transferase (GST) in cerebral cortex and of GST in cerebellum of SO-deficient rats. Moreover, sulfite increased the activities of complexes II and II-III in striatum and of complex II in hippocampus, but reduced the activity of complex IV in striatum of SO-deficient rats. Sulfite also decreased the mitochondrial membrane potential in cerebral cortex and striatum, whereas it had no effect on mitochondrial mass in any encephalic tissue evaluated. Finally, sulfite inhibited the activities of malate and glutamate dehydrogenase in cerebral cortex of SO-deficient rats. Taken together, our findings indicate that cerebral cortex and striatum are more vulnerable to sulfite-induced toxicity than cerebellum and hippocampus. It is presumed that these pathomechanisms may contribute to the pathophysiology of neurological damage found in patients affected by SO deficiency.

6.
Biochim Biophys Acta Mol Basis Dis ; 1863(9): 2135-2148, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28529047

RESUMEN

Sulfite accumulates in tissues of patients affected by sulfite oxidase (SO) deficiency, a neurometabolic disease characterized by seizures and progressive encephalopathy, often resulting in early death. We investigated the effects of sulfite on mitochondrial function, antioxidant system, glial reactivity and neuronal damage in rat striatum, as well as the potential protective effects of bezafibrate on sulfite-induced toxicity. Thirty-day-old rats were intrastriatally administered with sulfite (2µmol) or NaCl (2µmol; control) and euthanized 30min after injection for evaluation of biochemical parameters and western blotting, or 7days after injection for analysis of glial reactivity and neuronal damage. Treatment with bezafibrate (30 or 100mg/kg/day) was performed by gavage during 7days before (pre-treatment) or after sulfite administration. Sulfite decreased creatine kinase and citrate synthase activities, mitochondrial mass, and PGC-1α nuclear content whereas bezafibrate pre-treatment prevented these alterations. Sulfite also diminished cytochrome c oxidase (COX) IV-1 content, glutathione levels and the activities of glutathione peroxidase (GPx), glutathione reductase (GR), glutathione S-transferase (GST) and glucose-6-phosphate dehydrogenase (G6PDH). On the other hand, catalase activity was increased by sulfite. Bezafibrate pre-treatment prevented the reduction of GPx, GR, GST and G6PDH activities. Finally, sulfite induced glial reactivity and neuronal damage, which were prevented by bezafibrate when administered before or after sulfite administration. Our findings provide strong evidence that sulfite induces neurotoxicity that leads to glial reactivity and neuronal damage. Since bezafibrate exerts neuroprotective effects against sulfite toxicity, it may be an attractive agent for the development of novel therapeutic strategies for SO-deficient patients.


Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos/metabolismo , Antioxidantes/metabolismo , Bezafibrato/farmacología , Cuerpo Estriado/metabolismo , Mitocondrias/metabolismo , Neuroglía/metabolismo , Neuronas/metabolismo , Sulfito-Oxidasa/deficiencia , Sulfitos/toxicidad , Errores Innatos del Metabolismo de los Aminoácidos/patología , Animales , Masculino , Mitocondrias/patología , Neuroglía/patología , Neuronas/patología , Ratas , Ratas Wistar , Sulfito-Oxidasa/metabolismo
7.
Biochim Biophys Acta Mol Basis Dis ; 1863(9): 2192-2201, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28624490

RESUMEN

Hydrogen sulfide (sulfide) accumulates at high levels in brain of patients with ethylmalonic encephalopathy (EE). In the present study, we evaluated whether sulfide could disturb energy and redox homeostasis, and induce mitochondrial permeability transition (mPT) pore opening in rat brain aiming to better clarify the neuropathophysiology of EE. Sulfide decreased the activities of citrate synthase and aconitase in rat cerebral cortex mitochondria, and of creatine kinase (CK) in rat cerebral cortex, striatum and hippocampus supernatants. Glutathione prevented sulfide-induced CK activity decrease in the cerebral cortex. Sulfide also diminished mitochondrial respiration in cerebral cortex homogenates, and dissipated mitochondrial membrane potential (ΔΨm) and induced swelling in the presence of calcium in brain mitochondria. Alterations in ΔΨm and swelling caused by sulfide were prevented by the combination of ADP and cyclosporine A, and by ruthenium red, indicating the involvement of mPT in these effects. Furthermore, sulfide increased the levels of malondialdehyde in cerebral cortex supernatants, which was prevented by resveratrol and attenuated by glutathione, and of thiol groups in a medium devoid of brain samples. Finally, we verified that sulfide did not alter cell viability and DCFH oxidation in cerebral cortex slices, primary cortical astrocyte cultures and SH-SY5Y cells. Our data provide evidence that bioenergetics disturbance and lipid peroxidation along with mPT pore opening are involved in the pathophysiology of brain damage observed in EE.


Asunto(s)
Encefalopatías Metabólicas Innatas/metabolismo , Corteza Cerebral/metabolismo , Metabolismo Energético/efectos de los fármacos , Sulfuro de Hidrógeno/efectos adversos , Peroxidación de Lípido/efectos de los fármacos , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Púrpura/metabolismo , Animales , Encefalopatías Metabólicas Innatas/inducido químicamente , Encefalopatías Metabólicas Innatas/patología , Línea Celular Tumoral , Corteza Cerebral/patología , Sulfuro de Hidrógeno/farmacología , Masculino , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Poro de Transición de la Permeabilidad Mitocondrial , Púrpura/inducido químicamente , Púrpura/patología , Ratas , Ratas Wistar
8.
Microb Pathog ; 107: 349-353, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28414167

RESUMEN

It has long been recognized that there are several infectious diseases linked to the impairment of enzymatic complexes of the mitochondrial respiratory chain, with consequent production of reactive oxygen species (ROS), that contribute to disease pathogenesis. In this study, we determined whether the inhibition on mitochondrial respiratory chain might be considered a pathway involved in the production of ROS in gills of Rhamdia quelen experimentally infected by P. aeruginosa. The animals were divided into two groups with six fish each: uninfected (the negative control group) and infected (the positive control group). On day 7 post-infection (PI), animals were euthanized and the gills were collected to assess the activities of complexes I-III, II and IV of the respiratory chain, as well as ROS levels. The activities of complexes I-III, II and IV of the respiratory chain in gills decreased, while the ROS levels increased in infected compared to uninfected animals. Moreover, a significant negative correlation was found between enzymatic activity of the complexes I-III and IV related to ROS levels in P. aeruginosa infected animals, corroborating to our hypothesis that inhibition on complexes of respiratory chain leads to ROS formation. Also, microscopic severe gill damage and destruction of primary and secondary lamellae were observed in infected animals, with the presence of hyperplasia, leukocytic infiltration and telangiectasia. In summary, we have demonstrated, for the first time, that experimental infection by P. aeruginosa inhibits the activities of mitochondrial complexes of respiratory chain and, consequently, impairs the cellular energy homeostasis. Moreover, the inhibition on mitochondrial complexes I-III and IV are linked to the ROS production, contributing to disease pathogenesis.


Asunto(s)
Bagres/metabolismo , Transporte de Electrón/efectos de los fármacos , Enfermedades de los Peces/microbiología , Branquias/metabolismo , Mitocondrias/metabolismo , Pseudomonas aeruginosa/patogenicidad , Especies Reactivas de Oxígeno/antagonistas & inhibidores , Animales , Citocromo-c Peroxidasa , Modelos Animales de Enfermedad , Complejo I de Transporte de Electrón/efectos de los fármacos , Complejo IV de Transporte de Electrones/efectos de los fármacos , Enfermedades de los Peces/patología , Branquias/enzimología , Branquias/patología , Mitocondrias/efectos de los fármacos , Quinona Reductasas , Especies Reactivas de Oxígeno/metabolismo
9.
Microb Pathog ; 111: 28-32, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28807772

RESUMEN

It is becoming evident that bacterial infectious diseases affect brain energy metabolism, where alterations of enzymatic complexes of the mitochondrial respiratory chain and creatine kinase (CK) lead to an impairment of cerebral bioenergetics which contribute to disease pathogenesis in the central nervous system (CNS). Based on this evidence, the aim of this study was to evaluate whether alterations in the activity of complex IV of the respiratory chain and CK contribute to impairment of cerebral bioenergetics during Streptococcus agalactiae infection in silver catfish (Rhamdia quelen). The activity of complex IV of the respiratory chain in brain increased, while the CK activity decreased in infected animals compared to uninfected animals. Brain histopathology revealed inflammatory demyelination, gliosis of the brain and intercellular edema in infected animals. Based on this evidence, S. agalactiae infection causes an impairment in cerebral bioenergetics through the augmentation of complex IV activity, which may be considered an adaptive response to maintain proper functioning of the electron respiratory chain, as well as to ensure ongoing electron flow through the electron transport chain. Moreover, inhibition of cerebral CK activity contributes to lower availability of ATP, contributing to impairment of cerebral energy homeostasis. In summary, these alterations contribute to disease pathogenesis linked to the CNS.


Asunto(s)
Encéfalo/metabolismo , Forma Mitocondrial de la Creatina-Quinasa/metabolismo , Complejo IV de Transporte de Electrones/metabolismo , Transporte de Electrón/fisiología , Metabolismo Energético , Infecciones Estreptocócicas/metabolismo , Streptococcus agalactiae/patogenicidad , Adenosina Trifosfato/metabolismo , Animales , Encéfalo/microbiología , Encéfalo/patología , Brasil , Bagres/microbiología , Sistema Nervioso Central/metabolismo , Sistema Nervioso Central/microbiología , Sistema Nervioso Central/patología , Creatina Quinasa/metabolismo , Enfermedades Desmielinizantes , Modelos Animales de Enfermedad , Enfermedades de los Peces/enzimología , Enfermedades de los Peces/microbiología , Enfermedades de los Peces/patología , Gliosis/patología , Homeostasis , Humanos , Neutrófilos/microbiología , Neutrófilos/patología , Infecciones Estreptocócicas/microbiología
10.
Biochim Biophys Acta ; 1842(9): 1413-22, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24793416

RESUMEN

Sulfite oxidase (SO) deficiency is biochemically characterized by the accumulation of sulfite, thiosulfate and S-sulfocysteine in tissues and biological fluids of the affected patients. The main clinical symptoms include severe neurological dysfunction and brain abnormalities, whose pathophysiology is still unknown. The present study investigated the in vitro effects of sulfite and thiosulfate on mitochondrial homeostasis in rat brain mitochondria. It was verified that sulfite per se, but not thiosulfate, decreased state 3, CCCP-stimulated state and respiratory control ratio in mitochondria respiring with glutamate plus malate. In line with this, we found that sulfite inhibited the activities of glutamate and malate (MDH) dehydrogenases. In addition, sulfite decreased the activity of a commercial solution of MDH, that was prevented by antioxidants and dithiothreitol. Sulfite also induced mitochondrial swelling and reduced mitochondrial membrane potential, Ca(2+) retention capacity, NAD(P)H pool and cytochrome c immunocontent when Ca(2+) was present in the medium. These alterations were prevented by ruthenium red, cyclosporine A (CsA) and ADP, supporting the involvement of mitochondrial permeability transition (MPT) in these effects. We further observed that N-ethylmaleimide prevented the sulfite-elicited swelling and that sulfite decreased free thiol group content in brain mitochondria. These findings indicate that sulfite acts directly on MPT pore containing thiol groups. Finally, we verified that sulfite reduced cell viability in cerebral cortex slices and that this effect was prevented by CsA. Therefore, it may be presumed that disturbance of mitochondrial energy homeostasis and MPT induced by sulfite could be involved in the neuronal damage characteristic of SO deficiency.


Asunto(s)
Encéfalo/efectos de los fármacos , Metabolismo Energético/efectos de los fármacos , Homeostasis/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Proteínas de Transporte de Membrana Mitocondrial/efectos de los fármacos , Compuestos de Sulfhidrilo/química , Sulfitos/farmacología , Errores Innatos del Metabolismo de los Aminoácidos/metabolismo , Errores Innatos del Metabolismo de los Aminoácidos/patología , Animales , Encéfalo/metabolismo , Proliferación Celular , Citocromos c/metabolismo , Immunoblotting , Masculino , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias/metabolismo , Mitocondrias Hepáticas/efectos de los fármacos , Mitocondrias Hepáticas/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Poro de Transición de la Permeabilidad Mitocondrial , NADP/metabolismo , Consumo de Oxígeno/efectos de los fármacos , Ratas , Ratas Wistar , Compuestos de Sulfhidrilo/metabolismo , Sulfito-Oxidasa/deficiencia , Sulfito-Oxidasa/metabolismo
11.
Mol Cell Biochem ; 395(1-2): 125-34, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24939360

RESUMEN

Patients with non-ketotic hyperglycinemia (NKH) present severe neurological symptoms and brain abnormalities involving cerebellum. Although the pathomechanisms underlying the cerebellum damage have not been studied, high tissue levels of glycine (GLY), the biochemical hallmark of this disorder have been suggested to contribute to the neuropathology of this disease. We investigated the in vitro effects of GLY on important parameters of oxidative stress and energy metabolism in cerebellum of 30-day-old rats. Our results show that GLY increased 2',7'-dichlorofluorescin oxidation, suggesting that reactive species production are augmented by GLY in the cerebellum. However, hydrogen peroxide generation was not altered by GLY. GLY also increased thiobarbituric acid-reactive substances (TBA-RS) levels and reduced the glutathione (GSH) content, indicating that this amino acid provokes lipid oxidative damage and compromises the non-enzymatic antioxidant defenses, respectively, in cerebellum. The antioxidants melatonin and trolox (the hydrosoluble analog of vitamin E) prevented the GLY-induced increase of TBA-RS and decrease of GSH in cerebellum, indicating the involvement of hydroxyl and peroxyl radicals in these effects. The NMDA receptor antagonist MK-801 also attenuated GLY-induced decrease of GSH, suggesting that this effect is mediated through NMDA receptor. In contrast, GLY did not alter the protein carbonyl formation and total and protein-bound sulfhydryl group content, as well as catalase and superoxide dismutase activities. Furthermore, GLY did not alter the activities of the respiratory chain complexes and creatine kinase. Our present data indicate that oxidative stress elicited by GLY in vitro may be a potential pathomechanism involved in the cerebellar dysfunction observed in NKH.


Asunto(s)
Cerebelo/efectos de los fármacos , Glutatión/metabolismo , Glicina/farmacología , Peroxidación de Lípido/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Animales , Cerebelo/metabolismo , Femenino , Regulación de la Expresión Génica , Peróxido de Hidrógeno/metabolismo , Técnicas In Vitro , Masculino , Ratas , Ratas Wistar , Especies Reactivas de Oxígeno/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo
12.
Biochimie ; 219: 21-32, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37541567

RESUMEN

Non ketotic hyperglycinemia (NKH) is an inborn error of glycine metabolism caused by mutations in the genes encoding glycine cleavage system proteins. Classic NKH has a neonatal onset, and patients present with severe neurodegeneration. Although glycine accumulation has been implicated in NKH pathophysiology, the exact mechanisms underlying the neurological damage and white matter alterations remain unclear. We investigated the effects of glycine in the brain of neonatal rats and MO3.13 oligodendroglial cells. Glycine decreased myelin basic protein (MBP) and myelin-associated glycoprotein (MAG) in the corpus callosum and striatum of rats on post-natal day (PND) 15. Glycine also reduced neuroglycan 2 (NG2) and N-methyl-d-aspartate receptor subunit 1 (NR1) in the cerebral cortex and striatum on PND15. Moreover, glycine reduced striatal glutamate aspartate transporter 1 (GLAST) content and neuronal nucleus (NeuN), and increased glial fibrillary acidic protein (GFAP) on PND15. Glycine also increased DCFH oxidation and malondialdehyde levels and decreased GSH concentrations in the cerebral cortex and striatum on PND6, but not on PND15. Glycine further reduced viability but did not alter DCFH oxidation and GSH levels in MO3.13 cells after 48- and 72-h incubation. These data indicate that impairment of myelin structure and glutamatergic system and induction of oxidative stress are involved in the neuropathophysiology of NKH.


Asunto(s)
Hiperglicinemia no Cetósica , Humanos , Animales , Ratas , Hiperglicinemia no Cetósica/genética , Hiperglicinemia no Cetósica/metabolismo , Glicina , Vaina de Mielina/metabolismo , Oxidación-Reducción , Transmisión Sináptica , Homeostasis
13.
Mol Neurobiol ; 61(7): 4908-4922, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38151612

RESUMEN

Carnosine is composed of ß-alanine and L-histidine and is considered to be an important neuroprotective agent with antioxidant, metal chelating, and antisenescence properties. However, children with serum carnosinase deficiency present increased circulating carnosine and severe neurological symptoms. We here investigated the in vitro effects of carnosine on redox and mitochondrial parameters in cultured cortical astrocytes from neonatal rats. Carnosine did not alter mitochondrial content or mitochondrial membrane potential. On the other hand, carnosine increased mitochondrial superoxide anion formation, levels of thiobarbituric acid reactive substances and oxidation of 2',7'-dichlorofluorescin diacetate (DCF-DA), indicating that carnosine per se acts as a pro-oxidant agent. Nonetheless, carnosine prevented DCF-DA oxidation induced by H2O2 in cultured cortical astrocytes. Since alterations on mitochondrial membrane potential are not likely to be involved in these effects of carnosine, the involvement of N-Methyl-D-aspartate (NMDA) receptors in the pro-oxidant actions of carnosine was investigated. MK-801, an antagonist of NMDA receptors, prevented DCF-DA oxidation induced by carnosine in cultured cortical astrocytes. Astrocyte reactivity induced by carnosine was also prevented by the coincubation with MK-801. The present study shows for the very first time the pro-oxidant effects of carnosine per se in astrocytes. The data raise awareness on the importance of a better understanding of the biological actions of carnosine, a nutraceutical otherwise widely reported as devoid of side effects.


Asunto(s)
Astrocitos , Carnosina , Corteza Cerebral , Ratas Wistar , Especies Reactivas de Oxígeno , Animales , Carnosina/farmacología , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Células Cultivadas , Especies Reactivas de Oxígeno/metabolismo , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Animales Recién Nacidos , Ratas , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Receptores de N-Metil-D-Aspartato/metabolismo , Peróxido de Hidrógeno , Oxidación-Reducción/efectos de los fármacos
14.
Cell Biochem Biophys ; 81(4): 683-695, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37589888

RESUMEN

Ethylmalonic encephalopathy (EE) is a severe inherited metabolic disorder that causes tissue accumulation of hydrogen sulfide (sulfide) and thiosulfate in patients. Although symptoms are predominantly neurological, chronic hemorrhagic diarrhea associated with intestinal mucosa abnormalities is also commonly observed. Considering that the pathophysiology of intestinal alterations in EE is virtually unknown and that sulfide and thiosulfate are highly reactive molecules, the effects of these metabolites were investigated on bioenergetic production and transfer in the intestine of rats. We observed that sulfide reduced NADH- and FADH2-linked mitochondrial respiration in the intestine, which was avoided by reduced glutathione (GSH) but not by melatonin. Thiosulfate did not change respiration. Moreover, both metabolites markedly reduced the activity of total, cytosolic and mitochondrial isoforms of creatine kinase (CK) in rat intestine. Noteworthy, the addition of GSH but not melatonin, apocynin, and Trolox (hydrosoluble vitamin E) prevented the change in the activities of total CK and its isoforms caused by sulfide and thiosulfate, suggesting a direct protein modification on CK structure by these metabolites. Sulfide further increased thiol content in the intestine, suggesting a modulation in the redox state of these groups. Finally, sulfide and thiosulfate decreased the viability of Caco-2 intestinal cells. Our data suggest that bioenergetic impairment caused by sulfide and thiosulfate is a mechanism involved in the gastrointestinal abnormalities found in EE.


Asunto(s)
Sulfuro de Hidrógeno , Humanos , Ratas , Animales , Ratas Wistar , Tiosulfatos/farmacología , Células CACO-2 , Metabolismo Energético , Sulfuros , Intestinos , Diarrea , Isoformas de Proteínas/metabolismo
15.
Cells ; 12(12)2023 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-37371027

RESUMEN

Sulfite predominantly accumulates in the brain of patients with isolated sulfite oxidase (ISOD) and molybdenum cofactor (MoCD) deficiencies. Patients present with severe neurological symptoms and basal ganglia alterations, the pathophysiology of which is not fully established. Therapies are ineffective. To elucidate the pathomechanisms of ISOD and MoCD, we investigated the effects of intrastriatal administration of sulfite on myelin structure, neuroinflammation, and oxidative stress in rat striatum. Sulfite administration decreased FluoromyelinTM and myelin basic protein staining, suggesting myelin abnormalities. Sulfite also increased the staining of NG2, a protein marker of oligodendrocyte progenitor cells. In line with this, sulfite also reduced the viability of MO3.13 cells, which express oligodendroglial markers. Furthermore, sulfite altered the expression of interleukin-1ß (IL-1ß), interleukin-6 (IL-6), interleukin-10 (IL-10), cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS) and heme oxygenase-1 (HO-1), indicating neuroinflammation and redox homeostasis disturbances. Iba1 staining, another marker of neuroinflammation, was also increased by sulfite. These data suggest that myelin changes and neuroinflammation induced by sulfite contribute to the pathophysiology of ISOD and MoCD. Notably, post-treatment with bezafibrate (BEZ), a pan-PPAR agonist, mitigated alterations in myelin markers and Iba1 staining, and IL-1ß, IL-6, iNOS and HO-1 expression in the striatum. MO3.13 cell viability decrease was further prevented. Moreover, pre-treatment with BEZ also attenuated some effects. These findings show the modulation of PPAR as a potential opportunity for therapeutic intervention in these disorders.


Asunto(s)
Bezafibrato , Receptores Activados del Proliferador del Peroxisoma , Ratas , Animales , Bezafibrato/farmacología , Receptores Activados del Proliferador del Peroxisoma/farmacología , Vaina de Mielina , Enfermedades Neuroinflamatorias , Interleucina-6/farmacología , Estrés Oxidativo , Sulfitos/farmacología
16.
ASN Neuro ; 15: 17590914231157974, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36815213

RESUMEN

Aging is marked by complex and progressive physiological changes, including in the glutamatergic system, that lead to a decline of brain function. Increased content of senescent cells in the brain, such as glial cells, has been reported to impact cognition both in animal models and human tissue during normal aging and in the context of neurodegenerative disease. Changes in the glutamatergic synaptic activity rely on the glutamate-glutamine cycle, in which astrocytes handle glutamate taken up from synapses and provide glutamine for neurons, thus maintaining excitatory neurotransmission. However, the mechanisms of glutamate homeostasis in brain aging are still poorly understood. Herein, we showed that mouse senescent astrocytes in vitro undergo upregulation of GLT-1, GLAST, and glutamine synthetase (GS), along with the increased enzymatic activity of GS and [3H]-D-aspartate uptake. Furthermore, we observed higher levels of GS and increased [3H]-D-aspartate uptake in the hippocampus of aged mice, although the activity of GS was similar between young and old mice. Analysis of a previously available RNAseq dataset of mice at different ages revealed upregulation of GLAST and GS mRNA levels in hippocampal astrocytes during aging. Corroborating these rodent data, we showed an increased number of GS + cells, and GS and GLT-1 levels/intensity in the hippocampus of elderly humans. Our data suggest that aged astrocytes undergo molecular and functional changes that control glutamate-glutamine homeostasis upon brain aging.


Asunto(s)
Astrocitos , Enfermedades Neurodegenerativas , Animales , Humanos , Ratones , Anciano , Astrocitos/metabolismo , Glutamina/genética , Glutamina/metabolismo , Glutamato-Amoníaco Ligasa/genética , Glutamato-Amoníaco Ligasa/metabolismo , Regulación hacia Arriba , Sistema de Transporte de Aminoácidos X-AG/genética , Sistema de Transporte de Aminoácidos X-AG/metabolismo , Ácido D-Aspártico/genética , Ácido Glutámico/metabolismo , Hipocampo/metabolismo
17.
Eur J Pharmacol ; 924: 174950, 2022 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-35430210

RESUMEN

Barth syndrome (BTHS) and dilated cardiomyopathy with ataxia syndrome (DCMA) are biochemically characterized by high levels of 3-methylglutaric acid (MGA) in the urine and plasma of affected patients. Although cardiolipin abnormalities have been observed in these disorders, their pathophysiology is not fully established. We evaluated the effects of MGA administration on redox homeostasis and mitochondrial function in heart, as well as on vascular reactivity in aorta of Wistar rats without cardiolipin genetic deficiency. Potential cardioprotective effects of a pretreatment with bezafibrate (BEZ), a pan-PPAR agonist that induces mitochondrial biogenesis, were also determined. Our findings showed that MGA induced lipid peroxidation, altered enzymatic and non-enzymatic antioxidant defenses and reduced respiratory chain function in rat heart. MGA also increased Drp1 and reduced MFN1 levels, suggesting mitochondrial fission induction. Moreover, MGA altered MAPK and Akt signaling pathways, and had a strong tendency to reduce Sirt1 and PGC-1α, indicative of mitochondrial biogenesis impairment. Aorta vascular reactivity was further altered by MGA. Additionally, BEZ mitigated most alterations on antioxidant defenses and mitochondrial quality control proteins provoked by MGA. However, vascular reactivity disturbances were not prevented. It may be presumed that oxidative stress, mitochondrial bioenergetics and control quality disturbances, and vascular reactivity impairment caused by MGA may be involved in the cardiac failure observed in BTHS and DCMA, and that BEZ should be considered as a pharmacological candidate for the treatment of these disorders.


Asunto(s)
Antioxidantes , Bezafibrato , Animales , Antioxidantes/metabolismo , Antioxidantes/farmacología , Bezafibrato/metabolismo , Bezafibrato/farmacología , Bezafibrato/uso terapéutico , Cardiolipinas/metabolismo , Humanos , Mitocondrias , Ratas , Ratas Wistar
18.
Hypertens Res ; 44(8): 918-931, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33875858

RESUMEN

Pulmonary arterial hypertension (PAH) is characterized by increased resistance of the pulmonary vasculature and afterload imposed on the right ventricle (RV). Two major contributors to the worsening of this disease are oxidative stress and mitochondrial impairment. This study aimed to explore the effects of monocrotaline (MCT)-induced PAH on redox and mitochondrial homeostasis in the RV and brain and how circulating extracellular vesicle (EV) signaling is related to these phenomena. Wistar rats were divided into control and MCT groups (60 mg/kg, intraperitoneal), and EVs were isolated from blood on the day of euthanasia (21 days after MCT injections). There was an oxidative imbalance in the RV, brain, and EVs of MCT rats. PAH impaired mitochondrial function in the RV, as seen by a decrease in the activities of mitochondrial complex II and citrate synthase and manganese superoxide dismutase (MnSOD) protein expression, but this function was preserved in the brain. The key regulators of mitochondrial biogenesis, namely, proliferator-activated receptor gamma coactivator 1-alpha and sirtuin 1, were poorly expressed in the EVs of MCT rats, and this result was positively correlated with MnSOD expression in the RV and negatively correlated with MnSOD expression in the brain. Based on these findings, we can conclude that the RV is severely impacted by the development of PAH, but this pathological injury may signal the release of circulating EVs that communicate with different organs, such as the brain, helping to prevent further damage through the upregulation of proteins involved in redox and mitochondrial function.


Asunto(s)
Vesículas Extracelulares , Hipertensión Pulmonar , Hipertensión Arterial Pulmonar , Animales , Encéfalo , Modelos Animales de Enfermedad , Homeostasis , Hipertensión Pulmonar/inducido químicamente , Mitocondrias , Monocrotalina/toxicidad , Oxidación-Reducción , Estrés Oxidativo , Ratas , Ratas Wistar
19.
Fundam Clin Pharmacol ; 35(2): 351-363, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32851690

RESUMEN

This study evaluated the effect of lacosamide (LCM) on biochemical and mitochondrial parameters after PTZ kindling in mice. Male mice were treated on alternative days for a period of 11 days with LCM (20, 30, or 40 mg/kg), saline, or diazepam (2 mg/kg), before PTZ administration (50 mg/kg). The hippocampi were collected to evaluate free radicals, the activities of superoxide dismutase (SOD), catalase (CAT), and the mitochondrial complexes I-III, II, and II-III, as well as Bcl-2 and cyclo-oxygenase-2 (COX-2) expressions. Hippocampi, blood, and bone marrow were collected for genotoxic and mutagenic evaluations. LCM 40 mg/kg increased latency and decreased percentage of seizures, only on the 3rd day of observation. The dose of 30 mg/kg only showed positive effects on the percentage of seizures on the 2nd day of observation. LCM decreased free radicals and SOD activity and the dose of 40 mg/kg were able to increase CAT activity. LCM 30 and 40 mg/kg improved the enzymatic mitochondrial activity of the complex I-III and LCM 30 mg/kg improved the activity of the complex II. In the comet assay, the damage induced by PTZ administration was reduced by LCM 20 and 30 mg/kg. The dose of 20 mg/kg increased COX-2 expression while the highest dose used, 40 mg/kg, was able to reduce this expression when compared to the group treated with LCM 20 mg/kg. Although LCM did not produce the antiepileptogenic effect in vivo, it showed the neuroprotective effect against oxidative stress, bioenergetic dysfunction, and DNA damage induced by the repeated PTZ administration.


Asunto(s)
Excitación Neurológica/efectos de los fármacos , Lacosamida/farmacología , Fármacos Neuroprotectores/farmacología , Animales , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Masculino , Ratones , Ratones Endogámicos , Pentilenotetrazol
20.
Biochimie ; 171-172: 187-196, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32169667

RESUMEN

High urinary excretion and tissue accumulation of 3-methylglutaric acid (MGA) are observed in patients affected by 3-hydroxy-3-methylglutaric (HMGA) and 3-methylglutaconic (MGTA) acidurias. The pathomechanisms underlying the hepatic dysfunction commonly observed in these disorders are not fully elucidated so that we investigated here the effects of intraperitoneal administration of MGA on redox homeostasis, mitochondrial bioenergetics, biogenesis and dynamics in rat liver. The effects of a pre-treatment with the protective compound bezafibrate (BEZ) were also determined. Our data showed that MGA induced lipid peroxidation and altered enzymatic and non-enzymatic antioxidant defenses in liver, indicating redox homeostasis disruption. BEZ prevented most of these alterations induced by MGA. MGA also decreased the activities of the respiratory chain complexes II and IV and increased of II-III, whereas BEZ prevented the alteration in complex II activity. Furthermore, MGA decreased levels of nuclear PGC-1α and Sirt1, and increased levels of AMPKα1 and cytosolic PPARγ, which were blocked by BEZ. MGA augmented the levels of mitofusin-1 and dynamin-related protein 1, suggesting that both fusion and fission mitochondrial processes are enhanced by MGA. BEZ was able to prevent only the changes in mitofusin-1 levels. Collectively, these findings indicate that oxidative stress and mitochondrial dysfunction are mechanisms involved in the hepatic dysfunction found in HMGA and MGTA. It is also presumed that mitochondrial biogenesis stimulation may constitute an attractive approach to reduce MGA toxicity in liver of individuals affected by HMGA and MGTA.


Asunto(s)
Bezafibrato/uso terapéutico , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Glutaratos/toxicidad , Meglutol/análogos & derivados , Meglutol/toxicidad , Animales , Antioxidantes/uso terapéutico , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Femenino , Peroxidación de Lípido , Hígado/metabolismo , Masculino , Meglutol/metabolismo , Mitocondrias/metabolismo , Biogénesis de Organelos , Estrés Oxidativo/efectos de los fármacos , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA