Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Phys Rev Lett ; 129(17): 173202, 2022 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-36332250

RESUMEN

High-harmonic generation is typically thought of as a sub-laser-cycle process, with the electron's excursion in the continuum lasting a fraction of the optical cycle. However, it was recently suggested that long-lived Rydberg states can play a particularly important role in high harmonic generation by atoms driven by the combination of the counterrotating circularly polarized fundamental light field and its second harmonic. Here we report direct experimental evidence of very long and stable Rydberg trajectories contributing to high-harmonic generation in such fields. We track their dynamics inside the laser pulse using the spin-orbit evolution in the ionic core, utilizing the spin-orbit Larmor clock. We confirm their effect on harmonic emission both via microscopic simulations and by showing how this radiation can lead to a well-collimated macroscopic far-field signal. Our observations contrast sharply with the general view that long-lived Rydberg orbits should generate negligible contribution to the macroscopic far-field high harmonic response of the medium.

2.
Opt Express ; 29(4): 5982-5992, 2021 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-33726129

RESUMEN

Extreme ultraviolet (XUV) radiation finds numerous applications in spectroscopy. When the XUV light is generated via high-order harmonic generation (HHG), it may be produced in the form of attosecond pulses, allowing access to unprecedented ultrafast phenomena. However, the HHG efficiency remains limited. Here we present an observation of a new regime of coherent XUV emission which has a potential to provide higher XUV intensity, vital for applications. We explain the process by high-order parametric generation, involving the combined emission of THz and XUV photons, where the phase matching is very robust against ionization. This introduces a way to use higher-energy driving pulses, thus generating more XUV photons.

3.
Phys Rev Lett ; 126(24): 247201, 2021 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-34213921

RESUMEN

We investigate the temperature dependence of the spin dynamics in the pyrochlore magnet Nd_{2}Zr_{2}O_{7} by neutron scattering experiments. At low temperature, this material undergoes a transition towards an "all-in-all-out" antiferromagnetic phase and the spin dynamics encompass a dispersionless mode, characterized by a dynamical spin ice structure factor. Unexpectedly, this mode is found to survive above T_{N}≈300 mK. Concomitantly, elastic correlations of the spin ice type develop. These are the signatures of a peculiar correlated paramagnetic phase which can be considered as a new example of Coulomb phase. Our observations near T_{N} do not reproduce the signatures expected for a Higgs transition, but show reminiscent features of the "all-in-all-out" order superimposed on a Coulomb phase.

4.
Phys Rev Lett ; 126(1): 017201, 2021 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-33480800

RESUMEN

We apply neutron spectroscopy to measure the magnetic dynamics in the S=3/2 magnet ß-CaCr_{2}O_{4} (T_{N}=21 K). The low-energy fluctuations, in the ordered state, resemble large-S linear spin waves from the incommensurate ground state. However, at higher energy transfers, these semiclassical and harmonic dynamics are replaced by an energy and momentum broadened continuum of excitations. Applying kinematic constraints required for energy and momentum conservation, sum rules of neutron scattering, and comparison against exact diagonalization calculations, we show that the dynamics at high-energy transfers resemble low-S one-dimensional quantum fluctuations. ß-CaCr_{2}O_{4} represents an example of a magnet at the border between classical Néel and quantum phases, displaying dual characteristics.

5.
Opt Express ; 28(21): 32105, 2020 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-33115172

RESUMEN

In this erratum, we correct two numerical errors due to conversion mistakes from our previous published manuscript [Opt. Express 26, 6001 (2018)]. In the original manuscript, the two errors compensated each other such that the conclusions remain perfectly unchanged.

6.
Phys Rev Lett ; 124(12): 127202, 2020 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-32281858

RESUMEN

The research field of magnetic frustration is dominated by triangle-based lattices but exotic phenomena can also be observed in pentagonal networks. A peculiar noncollinear magnetic order is indeed known to be stabilized in Bi_{2}Fe_{4}O_{9} materializing a Cairo pentagonal lattice. We present the spin wave excitations in the magnetically ordered state, obtained by inelastic neutron scattering. They reveal an unconventional excited state related to local precession of pairs of spins. The magnetic excitations are then modeled to determine the superexchange interactions for which the frustration is indeed at the origin of the spin arrangement. This analysis unveils a hierarchy in the interactions, leading to a paramagnetic state (close to the Néel temperature) constituted of strongly coupled dimers separated by much less correlated spins. This produces two types of response to an applied magnetic field associated with the two nonequivalent Fe sites, as observed in the magnetization distributions obtained using polarized neutrons.

7.
Proc Biol Sci ; 286(1904): 20182898, 2019 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-31164058

RESUMEN

Complex landscapes including semi-natural habitats are expected to favour natural enemies thereby enhancing natural pest biocontrol in crops. However, when considering a large number of situations, the response of natural biocontrol to landscape properties is globally inconsistent, a possible explanation being that local agricultural practices counteract landscape effects. In this study, along a crossed gradient of pesticide use intensity and landscape simplification, we analysed the interactive effects of landscape characteristics and local pesticide use intensity on natural biocontrol. During 3 years, using a set of sentinel prey (weed seeds, aphids and Lepidoptera eggs), biocontrol was estimated in 80 commercial fields located in four contrasted regions in France. For all types of prey excepted weed seeds, the predation rate was influenced by interactions between landscape characteristics and local pesticide use intensity. Proportion of meadow and length of interface between woods and crops had a positive effect on biocontrol of aphids where local pesticide use intensity was low but had a negative effect elsewhere. Moreover, the landscape proportion of suitable habitats for crop pests decreased the predation of sentinel prey, irrespectively of the local pesticide use intensity for weed seeds, but only in fields with low pesticide use for Lepidoptera eggs. These results show that high local pesticide use can counteract the positive expected effects of semi-natural habitats, but also that the necessary pesticide use reduction should be associated with semi-natural habitat enhancement to guarantee an effective natural biocontrol.


Asunto(s)
Agricultura/métodos , Ecosistema , Control Biológico de Vectores , Plaguicidas , Animales , Áfidos , Productos Agrícolas , Francia , Malezas , Conducta Predatoria , Semillas
8.
Opt Express ; 27(15): 20383-20396, 2019 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-31510133

RESUMEN

Recent progresses in femtosecond ytterbium-doped fiber laser technology are opening new perspectives in strong field physics and attosecond science. High-order harmonic generation from these systems is particularly interesting because it provides high flux beams of ultrashort extreme ultraviolet radiation. A great deal of effort has been devoted to optimize the macroscopic generation parameters. Here we investigate the possibility of enhancing the single-atom response by producing high-order harmonics from the second, third and fourth harmonics of a turnkey 50 W, 166 kHz femtosecond Yb-fiber laser providing 135 fs pulses at 1030 nm. We show that the harmonic efficiency is optimal when the process is driven by the third harmonic, producing 6.6 ± 1.3 × 1014 photons/s at 18 eV in argon, which corresponds to 1.9 ± 0.4 mW average power.

9.
Opt Express ; 27(20): 28998-29015, 2019 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-31684642

RESUMEN

In this paper, we introduce a pulse characterization technique that is free of phase-matching constraints, exploiting transient absorption in solids as an ultrafast optical switch. Based on a pump-probe setup, this technique uses pump pulses of sufficient intensity to induce the switch, while the pulses to characterize are probing the transmissivity drop of the photoexcited material. This enables the characterization of low-intensity ultra-broadband pulses at the detection limit of the spectrometer and within the transparency range of the solid. For example, by using zinc selenide (ZnSe), pulses with wavelengths from 0.5 to 20 µm can be characterized, denoting five octaves of spectral range. Using ptychography, we retrieve the temporal profiles of both the probe pulse and the switch. To demonstrate this approach, we measure ultrashort pulses from a titanium-sapphire (Ti-Sa) amplifier, which are compressed using a hollow core fiber setup, as well as infrared to mid-infrared pulses generated from an optical parametric amplifier (OPA). The characterized pulses are centered at wavelengths of 0.77, 1.53, 1.75, 4, and 10 µm, down to sub-two optical cycles duration, exceeding an octave of bandwidth, and with energy as low as a few nanojoules.

10.
Opt Express ; 26(5): 6001-6009, 2018 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-29529796

RESUMEN

We propose and implement a method to determine the absolute density profile of a gas jet producing high-order harmonics. By measuring the transverse profile of the fluorescence emitted by the plasma, we retrieve the local density in the gas jet. We use this technique during the optimization of the high-harmonics of 515 nm, 10 µJ, 130 fs pulses at 500 kHz and find that we can generate in absorption-limited conditions.

11.
Phys Rev Lett ; 120(25): 257205, 2018 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-29979049

RESUMEN

Inelastic neutron scattering measurements are performed on single crystals of the antiferromagnetic compound Mn_{5}Si_{3} in order to investigate the relation between the spin dynamics and the magnetothermodynamics properties. It is shown that, among the two stable antiferromagnetic phases of this compound, the high temperature one has an unusual magnetic excitation spectrum where propagative spin waves and diffuse spin fluctuations coexist. Moreover, it is evidenced that the inverse magnetocaloric effect of Mn_{5}Si_{3}, the cooling by adiabatic magnetization, is associated with field induced spin fluctuations.

12.
J Chem Phys ; 149(13): 134301, 2018 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-30292203

RESUMEN

Photoionization of randomly oriented chiral molecules with circularly polarized light leads to a strong forward/backward asymmetry in the photoelectron angular distribution. This chiroptical effect, referred to as Photoelectron Circular Dichroism (PECD), was shown to take place in all ionization regimes, from single photon to tunnel ionization. In the Resonance Enhanced Multiphoton Ionisation (REMPI) regime, where most of the table-top PECD experiments have been performed, understanding the role of the intermediate resonances is currently the subject of experimental and theoretical investigations. In an attempt to decouple the role of bound-bound and bound-continuum transitions in REMPI-PECD, we photoionized the (+)-limonene enantiomer using two-color laser fields in [1 + 1'] and [2 + 2'] ionization schemes, where the polarization state of each color can be controlled independently. We demonstrate that the main effect of the bound-bound transition is to break the sample isotropy by orientation-dependent photoexcitation, in agreement with recent theoretical predictions. We show that the angular distribution of PECD strongly depends on the anisotropy of photoexcitation to the intermediate state, which is different for circularly and linearly polarized laser pulses. On the contrary, the helicity of the pulse that drives the bound-bound transition is shown to have a negligible effect on the PECD.

13.
Phys Rev Lett ; 119(18): 187202, 2017 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-29219561

RESUMEN

Er_{2}Sn_{2}O_{7} remains a puzzling case among the extensively studied frustrated compounds of the rare-earth pyrochlore family. Indeed, while a first-order transition towards a long-range antiferromagnetic state with the so-called Palmer-Chalker structure is theoretically predicted, it has not yet been observed, leaving the issue as to whether it is a spin-liquid candidate open. We report on neutron scattering and magnetization measurements which evidence a second-order transition towards this Palmer-Chalker ordered state around 108 mK. Extreme care was taken to ensure a proper thermalization of the sample, which has proved to be crucial to successfully observe the magnetic Bragg peaks. At the transition, a gap opens in the excitations, superimposed on a strong quasielastic signal. The exchange parameters, refined from a spin-wave analysis in applied magnetic field, confirm that Er_{2}Sn_{2}O_{7} is a realization of the dipolar XY pyrochlore antiferromagnet. The proximity of competing phases and the strong XY anisotropy of the Er^{3+} magnetic moment might be at the origin of enhanced fluctuations, leading to the unexpected nature of the transition, the low ordering temperature, and the observed multiscale dynamics.

14.
Org Biomol Chem ; 15(3): 564-569, 2017 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-27991631

RESUMEN

The synthesis of a new contrast agent based on a ß-cyclodextrin scaffold and bearing a flexible lipophilic spacer arm on its secondary face is reported. Intermolecular host-guest inclusion complexes were known to undergo an enhancement of the contrast imaging. We extend this concept to intramolecular complexation. Inter- and intramolecular interactions are compared by NMR spectroscopy, circular dichroism and magnetic resonance imaging using hydrocinnamic acid and adamantane carboxylic acid as external guests. This positive variation of the observed relaxivity is a key element of new strategies aiming at developing smart molecular MRI probes.


Asunto(s)
Imagen por Resonancia Magnética , beta-Ciclodextrinas/síntesis química , Modelos Moleculares , Estructura Molecular , beta-Ciclodextrinas/química
15.
Phys Rev Lett ; 117(20): 203001, 2016 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-27886492

RESUMEN

We investigate the role of excited states in high-order harmonic generation by studying the spectral, spatial, and temporal characteristics of the radiation produced near the ionization threshold of argon by few-cycle laser pulses. We show that the population of excited states can lead either to direct extreme ultraviolet emission through free induction decay or to the generation of high-order harmonics through ionization from these states and recombination to the ground state. By using the attosecond lighthouse technique, we demonstrate that the high-harmonic emission from excited states is temporally delayed by a few femtoseconds compared to the usual harmonics, leading to a strong nonadiabatic spectral redshift.

16.
Phys Rev Lett ; 116(5): 053002, 2016 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-26894708

RESUMEN

Probing electronic wave functions of polyatomic molecules is one of the major challenges in high-harmonic spectroscopy. The extremely nonlinear nature of the laser-molecule interaction couples the multiple degrees of freedom of the probed system. We combine two-dimensional control of the electron trajectories and vibrational control of the molecules to disentangle the two main steps in high-harmonic generation-ionization and recombination. We introduce a new measurement scheme, frequency-resolved optomolecular gating, which resolves the temporal amplitude and phase of the harmonic emission from excited molecules. Focusing on the study of vibrational motion in N_{2}O_{4}, we show that such advanced schemes provide a unique insight into the structural and dynamical properties of the underlying mechanism.

17.
Appl Opt ; 55(14): 3879-86, 2016 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-27168307

RESUMEN

Optimal conditions for femtosecond laser bioprinting setup are reported on in terms of numerical aperture and accuracy of focal spot location for different bioinks to deposit without using a metallic absorbing layer.


Asunto(s)
Bioimpresión/métodos , Rayos Láser , Imagenología Tridimensional , Fenómenos Ópticos , Factores de Tiempo
18.
Phys Rev Lett ; 115(19): 197202, 2015 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-26588409

RESUMEN

By means of neutron scattering and magnetization measurements down to 90 mK, we determine the magnetic ground state of the spin-ice candidate Nd(2)Zr(2)O(7). We show that, despite ferromagnetic interactions, Nd(2)Zr(2)O(7) undergoes a transition around 285 mK towards an all-in-all-out antiferromagnetic state, with a strongly reduced ordered magnetic moment. We establish the (H,T) phase diagram in the three directions of the applied field and reveal a metamagnetic transition around 0.1 T, associated with an unexpected shape of the magnetization curves. We propose that this behavior results from the peculiar nature of the Nd^{3+} doublet, a dipolar-octupolar doublet, different from the standard Kramers doublet studied to date, thus revealing the importance of multipolar correlations in the properties of pyrochlore oxides.

19.
Phys Rev Lett ; 114(1): 017201, 2015 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-25615498

RESUMEN

We explore the spin dynamics emerging from the Néel phase of the chain compound antiferromagnet BaCo(2)V(2)O(8). Our inelastic neutron scattering study reveals unconventional discrete spin excitations, so-called Zeeman ladders, understood in terms of spinon confinement, due to the interchain attractive linear potential. These excitations consist of two interlaced series of modes, respectively, with transverse and longitudinal polarization. The latter, which correspond to a longitudinal fluctuation of the ordered moment, have no classical counterpart and are related to the zero-point fluctuations that weaken the ordered moment in weakly coupled quantum chains. Our analysis reveals that BaCo(2)V(2)O(8), with moderate Ising anisotropy and sizable interchain interactions, remarkably fulfills the conditions necessary for the observation of discrete long-lived longitudinal excitations.

20.
Ann Oncol ; 25(4): 843-847, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24608193

RESUMEN

BACKGROUND: The purpose of this study was to describe the fracture incidence and bone mineral density (BMD) evolution in a large cohort of post-menopausal women with breast cancer after 3 years of aromatase inhibitor (AI) therapy. PATIENTS AND METHODS: A prospective, longitudinal study in real-life setting. Each woman had an extensive medical assessment, a biological evaluation, a BMD measurement, and systematic spinal X-rays at baseline and after 3 years of AI therapy. Women with osteoporosis at baseline (T-score < -2.5 and/or non-traumatic fracture history) were treated by oral weekly bisphosphonates. RESULTS: Among 497 women (mean age 63.8 ± 9.6 years) included in this study, 389 had a bone evaluation both at baseline and after 3 years of AI therapy: 267 women (mean age 61.2 ± 8.6) with no osteoporosis at baseline and 122 women (mean age 67.2 ± 9.1) with osteoporosis at baseline justifying a weekly oral bisphosphonate treatment. Women without bisphosphonates had a significant decrease in spine BMD (-3.5%, P < 0.01), neck BMD (-2.0%, P < 0.01), and total hip BMD (-2.1%, P < 0.01) over the 3 years but only 15 of them (5.6%) presented an incident vertebral or non-vertebral fracture. In osteoporotic women treated with bisphosphonates, spine and hip BMD were maintained at 3 years but 12 of them (9.8%) had an incident fracture. These fractured women were significantly older (74.1 ± 9.8 versus 66.5 ± 8.8) but also presented BMD loss during treatment suggesting poor adherence to bisphosphonate treatment. CONCLUSION: This real-life study confirmed that AIs induced moderate bone loss and low fracture incidence in post-menopausal women without initial osteoporosis. In women with baseline osteoporosis and AI therapy, oral bisphosphonates maintain BMD but were associated with a persistent fracture risk, particularly in older women.


Asunto(s)
Inhibidores de la Aromatasa/efectos adversos , Neoplasias de la Mama/tratamiento farmacológico , Fracturas Óseas/inducido químicamente , Factores de Edad , Anciano , Inhibidores de la Aromatasa/administración & dosificación , Densidad Ósea , Neoplasias de la Mama/complicaciones , Neoplasias de la Mama/patología , Femenino , Fracturas Óseas/complicaciones , Fracturas Óseas/patología , Humanos , Persona de Mediana Edad , Posmenopausia/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA