Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Nature ; 595(7865): 120-124, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34079125

RESUMEN

Compartmentalization is a defining characteristic of eukaryotic cells, and partitions distinct biochemical processes into discrete subcellular locations. Microscopy1 and biochemical fractionation coupled with mass spectrometry2-4 have defined the proteomes of a variety of different organelles, but many intracellular compartments have remained refractory to such approaches. Proximity-dependent biotinylation techniques such as BioID provide an alternative approach to define the composition of cellular compartments in living cells5-7. Here we present a BioID-based map of a human cell on the basis of 192 subcellular markers, and define the intracellular locations of 4,145 unique proteins in HEK293 cells. Our localization predictions exceed the specificity of previous approaches, and enabled the discovery of proteins at the interface between the mitochondrial outer membrane and the endoplasmic reticulum that are crucial for mitochondrial homeostasis. On the basis of this dataset, we created humancellmap.org as a community resource that provides online tools for localization analysis of user BioID data, and demonstrate how this resource can be used to understand BioID results better.


Asunto(s)
Biotinilación , Compartimento Celular , Transporte de Proteínas , Proteoma/análisis , Proteoma/química , Células Cultivadas , Conjuntos de Datos como Asunto , Retículo Endoplásmico/química , Retículo Endoplásmico/metabolismo , Células HEK293 , Células HeLa , Homeostasis , Humanos , Espectrometría de Masas , Mitocondrias/química , Mitocondrias/metabolismo , Orgánulos/química , Orgánulos/metabolismo , Proteoma/metabolismo , Reproducibilidad de los Resultados
3.
Methods Mol Biol ; 2152: 191-205, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32524554

RESUMEN

This chapter presents methods for exploiting the powerful tools available in the nematode worm Caenorhabditis elegans to understand the in vivo functions of cerebral cavernous malformation (CCM) genes and the organization of their associated signaling pathways. Included are methods for assessing phenotypes caused by loss-of-function mutations in the worm CCM genes kri-1 and ccm-3, CRISPR-based gene editing techniques, and protocols for conducting high-throughput forward genetic and small molecule screens.


Asunto(s)
Hemangioma Cavernoso del Sistema Nervioso Central/etiología , Hemangioma Cavernoso del Sistema Nervioso Central/metabolismo , Fenotipo , Alelos , Animales , Sistemas CRISPR-Cas , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Edición Génica , Predisposición Genética a la Enfermedad , Hemangioma Cavernoso del Sistema Nervioso Central/diagnóstico , Mutagénesis , Mutación , Ribonucleoproteínas/metabolismo
4.
Methods Mol Biol ; 2152: 479-485, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32524575

RESUMEN

Affinity purification of a target protein followed by mass spectrometry of the purified peptides can be used to identify physical interactors of the protein of interest. Using this biochemical approach on proteins from whole organisms such as C. elegans can reveal novel in vivo protein interactions that cannot be identified using homology-based predictions or in vitro approaches. Here we describe affinity purification of a GFP-tagged target protein from whole worm lysates, digestion of the purified proteins into peptides, and preparation of the peptides for analysis by mass spectrometry. This protocol has been optimized for ChromoTek GFP-Trap® Magnetic Agarose beads, but it may be used with other tags and antibody-conjugated beads.


Asunto(s)
Caenorhabditis elegans/metabolismo , Cromatografía de Afinidad , Espectrometría de Masas , Péptidos/metabolismo , Proteómica , Animales , Péptidos/química , Péptidos/aislamiento & purificación , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Proteómica/métodos
5.
JCI Insight ; 4(3)2019 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-30728328

RESUMEN

The purpose of this study was to determine important genes, functions, and networks contributing to the pathobiology of cerebral cavernous malformation (CCM) from transcriptomic analyses across 3 species and 2 disease genotypes. Sequencing of RNA from laser microdissected neurovascular units of 5 human surgically resected CCM lesions, mouse brain microvascular endothelial cells, Caenorhabditis elegans with induced Ccm gene loss, and their respective controls provided differentially expressed genes (DEGs). DEGs from mouse and C. elegans were annotated into human homologous genes. Cross-comparisons of DEGs between species and genotypes, as well as network and gene ontology (GO) enrichment analyses, were performed. Among hundreds of DEGs identified in each model, common genes and 1 GO term (GO:0051656, establishment of organelle localization) were commonly identified across the different species and genotypes. In addition, 24 GO functions were present in 4 of 5 models and were related to cell-to-cell adhesion, neutrophil-mediated immunity, ion transmembrane transporter activity, and responses to oxidative stress. We have provided a comprehensive transcriptome library of CCM disease across species and for the first time to our knowledge in Ccm1/Krit1 versus Ccm3/Pdcd10 genotypes. We have provided examples of how results can be used in hypothesis generation or mechanistic confirmatory studies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA